An iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems is presented. The signal from the source-destination(S-D) link is formulated as a highly correlated counterpart from the...An iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems is presented. The signal from the source-destination(S-D) link is formulated as a highly correlated counterpart from the relay-destination(R-D) link. A special XOR vector is defined using the correlated hard decision information blocks from two decoders and the extrinsic information exchanged between the two decoders is derived by the log-likelihood ratio(LLR) associated with the XOR vector. Such the decoding scheme is different from the traditional turbo-like detection/decoding algorithm, where the extrinsic information is computed by the side information and the soft decoder outputs. Simulations show that the presented algorithm has a slightly better performance than the traditional turbo-like algorithm(Taking the(255,175) EG-LDPC code as an example, it achieves about 0.1 dB performance gains aroundBLER=10^(-4)). Furthermore, the presented algorithm requires fewer computing operations per iteration and has faster convergence rate. For example, the average iteration of the presented algorithm is 33 at SNR=1.8 dB, which is about twice faster than that of the turbo-like algorithm, when decoding the(961,721) QC-LDPC code. Therefore, the presented decoding algorithm of correlated sources provides an alternative decoding solution for the LDPC-based relay systems.展开更多
基金supported by NSF of China (No.61362010,61661005)NSF of Guangxi (No.2015GXNSFAA139290,2014GXNSFBA118276,2012GXNSFAA053217)
文摘An iterative detection/decoding algorithm of correlated sources for the LDPC-based relay systems is presented. The signal from the source-destination(S-D) link is formulated as a highly correlated counterpart from the relay-destination(R-D) link. A special XOR vector is defined using the correlated hard decision information blocks from two decoders and the extrinsic information exchanged between the two decoders is derived by the log-likelihood ratio(LLR) associated with the XOR vector. Such the decoding scheme is different from the traditional turbo-like detection/decoding algorithm, where the extrinsic information is computed by the side information and the soft decoder outputs. Simulations show that the presented algorithm has a slightly better performance than the traditional turbo-like algorithm(Taking the(255,175) EG-LDPC code as an example, it achieves about 0.1 dB performance gains aroundBLER=10^(-4)). Furthermore, the presented algorithm requires fewer computing operations per iteration and has faster convergence rate. For example, the average iteration of the presented algorithm is 33 at SNR=1.8 dB, which is about twice faster than that of the turbo-like algorithm, when decoding the(961,721) QC-LDPC code. Therefore, the presented decoding algorithm of correlated sources provides an alternative decoding solution for the LDPC-based relay systems.