为获取AZ31B镁合金薄板非熔化极气体保护双弧焊(double-electrode gas metal arc welding,DE-GMAW)焊接残余应力场分布,用ANSYS软件对焊接过程进行数值模拟,探索焊前预热对镁合金残余应力的影响规律。建立双弧热源模型,通过热应力耦合法...为获取AZ31B镁合金薄板非熔化极气体保护双弧焊(double-electrode gas metal arc welding,DE-GMAW)焊接残余应力场分布,用ANSYS软件对焊接过程进行数值模拟,探索焊前预热对镁合金残余应力的影响规律。建立双弧热源模型,通过热应力耦合法,先计算焊接温度场进而计算应力场。获得焊件残余应力的分布规律,沿着焊缝纵向残余应力最大值约为41 MPa,焊缝两端即起弧和熄弧处受较大横向压应力作用,最大值达55.6 MPa;采用盲孔法进行试验测量,测量结果与模拟结果一致。通过实测数据与模拟结果分析,表明镁合金DE-GMAW焊接残余应力的分布特点;镁合金焊前预热温度为100℃时,能够有效降低焊件的残余应力。展开更多
文摘为获取AZ31B镁合金薄板非熔化极气体保护双弧焊(double-electrode gas metal arc welding,DE-GMAW)焊接残余应力场分布,用ANSYS软件对焊接过程进行数值模拟,探索焊前预热对镁合金残余应力的影响规律。建立双弧热源模型,通过热应力耦合法,先计算焊接温度场进而计算应力场。获得焊件残余应力的分布规律,沿着焊缝纵向残余应力最大值约为41 MPa,焊缝两端即起弧和熄弧处受较大横向压应力作用,最大值达55.6 MPa;采用盲孔法进行试验测量,测量结果与模拟结果一致。通过实测数据与模拟结果分析,表明镁合金DE-GMAW焊接残余应力的分布特点;镁合金焊前预热温度为100℃时,能够有效降低焊件的残余应力。