期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Mechanism of Metal Deactivators
1
作者 Zhang Jingcheng, Luo Yonghong, Zhong Baiyu (Research Institute of Petroleum Processing, Beijing 100083) 《石油学报(石油加工)》 EI CAS CSCD 北大核心 1997年第S1期133-135,共3页
MechanismofMetalDeactivatorsZhangJingcheng,LuoYonghong,ZhongBaiyu(ResearchInstituteofPetroleumProcesing,Beij... MechanismofMetalDeactivatorsZhangJingcheng,LuoYonghong,ZhongBaiyu(ResearchInstituteofPetroleumProcesing,Beijing100083)Abstrac... 展开更多
关键词 METAL deactivator MECHANISM
下载PDF
Deactivation mechanism for water splitting:Recent advances 被引量:1
2
作者 Yansong Jia Yang Li +8 位作者 Qiong Zhang Sohail Yasin Xinyu Zheng Kai Ma Zhengli Hua Jianfeng Shi Chaohua Gu Yuhai Dou Shixue Dou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期53-82,共30页
Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attentio... Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described. 展开更多
关键词 deactivation mechanism hydrogen evolution in situ characterization oxygen evolution water splitting
下载PDF
Towards the insights into the deactivation behavior of acetylene hydrogenation catalyst
3
作者 Hai-Xia Su Yang Jiao +8 位作者 Jian-Gong Shi Zhi-Wei Yuan Di Zhang Xu-Peng Wang Jing Ren Dan Liu Jian-Zhou Gui Hai-Yang Gao Xiao-Li Xu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1405-1414,共10页
A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;fi... A series of model catalysts were obtained by treating commercial fresh and spent catalysts unloaded from the factory with different methods, including green oil dipping, extraction and high-temperature regeneration;finally, the deactivation behavior of the commercial catalyst for acetylene hydrogenation were studied. The influence of various possible deactivation factors on the catalytic performance was elucidated via detailed structural characterization, surface composition analysis, and activity evaluation.The results showed that green oil, carbon deposit and sintering of active metal were the main reasons for deactivation, among which green oil and carbon deposit led to rapid deactivation, while the activity could be recovered after regeneration by high-temperature calcination. The sintering of active metal components was attributed to the high-temperature regeneration in hydrothermal conditions, which was slow but irreversible and accounted for permanent deactivation. Thus, optimizing the regeneration is expected to extend the service life of the commercial catalyst. 展开更多
关键词 ACETYLENE HYDROGENATION Green oil Carbon deposit SINTERING Catalyst deactivation
下载PDF
Hydrodechlorination of trifluoro-trichloroethane to chlorotrifluoroethylene:Revealing the deactivation mechanism and regeneration strategy of Pd-Cu/AC catalyst
4
作者 Song Tian Yicheng Chen +7 位作者 Xiaoyu Wen Bingcheng Li Jian Lu Zile Li Feng Feng Qingtao Wang Qunfeng Zhang Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期261-268,共8页
Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst... Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method. 展开更多
关键词 CFC-113 HYDRODECHLORINATION CHLOROTRIFLUOROETHYLENE Catalyst deactivation
下载PDF
Thermal stable Pt clusters anchored by K/TiO_(2)—Al_(2)O_(3)for efficient cycloalkane dehydrogenation
5
作者 Zhendong Wang Bofeng Zhang +1 位作者 Guozhu Liu Xiangwen Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期187-198,共12页
Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe pro... Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions. 展开更多
关键词 Cycloalkane dehydrogenation Pt clusters Oxygen vacancy defects COKING Stability DEACTIVATION
下载PDF
Understanding the catalytic performance and deactivation behaviour of second-promoter doped Pt/WO_(χ)/γ-Al_(2)O_(3) catalysts in the glycerol hydrogenolysis for selective and cleaner production of 1,3-propanediol
6
作者 Rafik Rajjak Shaikh Sittichai Damruang +2 位作者 Rais Ahmad Khan Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期486-507,共22页
The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the ca... The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis. 展开更多
关键词 Glycerol hydrogenolysis 1 3-PROPANEDIOL Metal-support interaction Second promoter Liquid phase Catalyst deactivation
下载PDF
Deactivation mechanism of acetone to isobutene conversion over Y/Beta catalyst
7
作者 Chang Wang Tingting Yan Weili Dai 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期133-142,共10页
The conversion of acetone derived from biomass to isobutene has attracted extensive attentions.In comparison with Brønsted acidic catalyst,Lewis acidic catalyst could exhibit a better catalytic performance with a... The conversion of acetone derived from biomass to isobutene has attracted extensive attentions.In comparison with Brønsted acidic catalyst,Lewis acidic catalyst could exhibit a better catalytic performance with a higher isobutene selectivity.However,the catalyst stability remains a key problem for the long-running acetone conversion and the reasons for catalyst deactivation are poorly understood up to now.Herein,the deactivation mechanism of Lewis acidic Y/Beta catalyst during the acetone to isobutene conversion was investigated by various characterization techniques,including acetone-temperature-programmed surface reaction,gas chromatography-mass spectrometry,in situ ultraviolet-visible,and ^(13)C cross polarization magic angle spinning nuclear magnetic resonance spectroscopy.A successive aldol condensation and cyclization were observed as the main side-reactions during the acetone conversion at Lewis acidic Y sites.In comparison with the low reaction temperature,a rapid formation and accumulation of the larger cyclic unsaturated aldehydes/ketones and aromatics could be observed,and which could strongly adsorb on the Lewis acidic sites,and thus cause the catalyst deactivation eventually.After a simple calcination,the coke deposits could be easily removed and the catalytic activity could be well restored. 展开更多
关键词 Deactivation mechanism Acetone to isobutene Lewis acid sites Y/Beta Spectroscopy
下载PDF
Effect of Fe Addition on Dehydrogenation Performance of Methylcyclohexance over Pt/Al_(2)O_(3)
8
作者 Tong Fengya Tian Hao +2 位作者 Wang Hao Miao Changxi Song Lei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期12-18,共7页
Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcycl... Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance. 展开更多
关键词 methylcyclohexane dehydrogenation hydrogen storage DEACTIVATION Fe addition
下载PDF
A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas
9
作者 Mostafa Tarek Janaina S.Santos +4 位作者 Victor Márquez Mohammad Fereidooni Mohammad Yazdanpanah Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期388-411,I0010,共25页
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ... Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S. 展开更多
关键词 Selective oxidation of H_(2)S Iron-based Catalysts Mechanism of deactivation Sulfur or sulfate deposition Transformation of iron species Sintering SDG 7
下载PDF
Deactivation mechanism of CaO in a flow type dimethyl carbonate synthesis process
10
作者 Jianing Liu Peng Zheng +5 位作者 Zizhen Yan Yuxin Wang Zhanguo Zhang Guangwen Xu Jianjun Guo Lei Shi 《Resources Chemicals and Materials》 2024年第1期46-53,共8页
It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale app... It is well known that calcium oxide (CaO) has better catalytic efficiency than most heterogeneous catalysts in many transesterification reactions. However, the gradual deactivation problem prevents its large-scale application in industry. In this paper, the deactivation mechanism of CaO in a fixed-bed reactor is investigated based on the transesterification reaction of propylene carbonate and methanol. The leaching amount of CaO during the reaction was estimated by the concentration of Ca in the products. The pretreated and recovered catalysts were characterized by FT-IR, XRD, TG-MS and SEM-EDS. It is evident from experiments and characterization that the deactivation process of CaO is accompanied by the leaching of calcium species and the generation of CaCO3, which are also verified by DFT calculations. At high temperature and high weight hourly space velocity, the deactivation was attributed to the formation of dense CaCO3 shell, which prevents the contact between the feedstock and the active species inside. 展开更多
关键词 Calcium oxide Dimethyl carbonate Deactivation mechanism Fixed-bed reactor TRANSESTERIFICATION
下载PDF
碱性去活柱反相高效液相色谱法分析红霉素肟及相关化合物 被引量:4
11
作者 曹志凌 梁建华 +1 位作者 姚国伟 杨新林 《色谱》 CAS CSCD 北大核心 2007年第6期946-947,共2页
采用碱性去活(BDS)C18柱分离测定了红霉素肟及相关化合物。以0.02mol/L磷酸氢二钾(用磷酸调pH7.2)-乙腈-甲醇(体积比为50:40:10)为流动相,检测波长为210nm,柱温为35℃。红霉素肟E、Z异构体及相关化合物红霉素A、红霉素A8... 采用碱性去活(BDS)C18柱分离测定了红霉素肟及相关化合物。以0.02mol/L磷酸氢二钾(用磷酸调pH7.2)-乙腈-甲醇(体积比为50:40:10)为流动相,检测波长为210nm,柱温为35℃。红霉素肟E、Z异构体及相关化合物红霉素A、红霉素A8,9-脱水-6,9-半缩酮和红霉素A6,9-9,12-螺缩酮五种组分分离完全,检测限(S/N=3)为6.0~24.0ng,线性关系良好,方法准确可靠,用于实际样品分析时取得较好的效果。 展开更多
关键词 反相高效液相色谱法(RP—HPLC) 红霉素肟(erythromycin A oxime) 相关化合物(relative compounds) 碱性去活柱(base—deactivated column)
下载PDF
分层实体制造(LOM)成形过程中的热力耦合有限元分析 被引量:1
12
作者 宋玉华 颜永年 张人佶 《中国机械工程》 EI CAS CSCD 北大核心 2000年第z1期37-40,共5页
在分层实体制造(LOM工艺)过程中,原型件存在着翘曲变形的问题,采用热力耦合的有限元分析方法对LOM成形过程进行分析,为优化工艺参数、获得高精度的原型件提供依据。在有限元分析过程中,针对LOM成形过程的特殊性,对其材料模型的... 在分层实体制造(LOM工艺)过程中,原型件存在着翘曲变形的问题,采用热力耦合的有限元分析方法对LOM成形过程进行分析,为优化工艺参数、获得高精度的原型件提供依据。在有限元分析过程中,针对LOM成形过程的特殊性,对其材料模型的选取、材料增长过程的描述、动态的边界条件等进行了特别的处理。采用了单元的activate/deactivate技术来对LOM成形过程的材料增长过程进行描述。 展开更多
关键词 分层实体制造 热力耦合分析 有限元分析 单元的activate/deactivate技术
下载PDF
MONTE-CARLOSIMULATION OF CATALYST DEACTIVATION
13
作者 王富民 辛峰 +1 位作者 廖晖 李绍芬 《Transactions of Tianjin University》 EI CAS 2000年第2期176-180,共页
Catalyst deactivation due to coking is microscopically analyzed,then a model is presented,based upon the analogy between coke deposition and solid aggregation.The Monte Carlo simulation results show that the model ca... Catalyst deactivation due to coking is microscopically analyzed,then a model is presented,based upon the analogy between coke deposition and solid aggregation.The Monte Carlo simulation results show that the model can fit the experimental data in all cases.With this model,the mechanism of formation of coke with different shapes is derived and the relation between the catalytic activity and coke shape is theoretically demonstrated.In addition,the model described in this paper can also be used to simulate the catalyst preparation so as to make more useful and efficient catalysts.The model in this paper is very simple,with only two parameters that indicate the nature of catalyst deactivation.The extension of the model to more complicated systems is also discussed. 展开更多
关键词 CATALYST coke deposition DEACTIVATION
全文增补中
Regeneration of catalysts deactivated by coke deposition:A review 被引量:23
14
作者 Jibin Zhou Jianping Zhao +3 位作者 Jinling Zhang Tao Zhang Mao Ye Zhongmin Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1048-1061,共14页
In industrial catalytic processes,coke deposition can cause catalyst deactivation by covering acid sites and/or blocking pores.The regeneration of deactivated catalysts,thereby removing the coke and simultaneously res... In industrial catalytic processes,coke deposition can cause catalyst deactivation by covering acid sites and/or blocking pores.The regeneration of deactivated catalysts,thereby removing the coke and simultaneously restoring the catalytic activity,is highly desired.Despite various chemical reactions and methods are available to remove coke,developing reliable,efficient,and economic regeneration methods for catalytic processes still remains a challenge in industrial practice.In this paper,the current progress of regeneration methods such as oxidation(air,ozone and oxynitride),gasification(carbon dioxide and water steam),and hydrogenation(hydrogen)is reviewed,which hopefully can shed some light on the design and optimization of catalysts and the related processes. 展开更多
关键词 Catalyst COKE DEACTIVATION REGENERATION Oxidation GASIFICATION HYDROGENATION
下载PDF
Stability and deactivation of OER electrocatalysts: A review 被引量:16
15
作者 Feng Zeng Chalachew Mebrahtu +2 位作者 Longfei Liao Anna Katharina Beine Regina Palkovits 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期301-329,I0009,共30页
Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by wa... Recently, H_(2) has attracted increasing attention as green energy carrier holding the possibility to replace fossil fuel-based energy sources and thereby reduce CO_(2) emissions. Green hydrogen can be generated by water electrolysis using renewable energies like wind and solar power. When it is combusted, only water forms as by-product. However, the efficiency of water electrolysis is hampered by the anodic oxygen evolution reaction(OER) because of the slow kinetics which leads to a high overpotential. Therefore, many catalysts have been developed for OER to facilitate the kinetics and reduce the overpotential. In addition to electrocatalytic activity, the stability of the catalysts is imperative for industrial application and has been intensively studied. In this review, we cover recent findings on the stability and deactivation mechanisms of OER catalysts. We discuss the correlation between OER activity and stability, methodologies and experimental techniques to study the stability and deactivation as well as the deactivation mechanisms, together with factors influencing stability. Furthermore, strategies for stabilizing and regenerating OER catalysts as well as methods to predict stability are summarized. Finally, the review highlights emerging methodologies yet to be explored and future directions of stability studies and the design of highly stable OER catalysts. 展开更多
关键词 Oxygen evolution OER STABILITY DURABILITY DEACTIVATION
下载PDF
Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization 被引量:13
16
作者 Guiquan Zhang Xin Zhang +2 位作者 Ting Bai Tengfei Chen Wentao Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期108-118,共11页
The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% wa... The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% was obtained on fresh Zn/HZ catalyst, which showed the worst catalytic stability. The cycle of reaction-regeneration significantly modified the texture and acidity of Zn/HZ catalyst, which in turn affected its catalytic performance and coking behavior in methanol conversion to BTX. The residual carbon located on the surface of Zn/HZ catalyst led to the decrease of acid sites and the change on the acid sites distribution, which played an important roles on its activity and deactivation. It was found that the high B/L ratio and the low total acid sites concentration of the Zn/HZ catalyst favored to the high BTX yield and good catalytic stability in methanol conversion. 展开更多
关键词 METHANOL AROMATIZATION reaction-regeneration ACIDITY DEACTIVATION
下载PDF
Dimethyl ether carbonylation over zeolites 被引量:11
17
作者 Ensheng Zhan Zhiping Xiong Wenjie Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第9期51-63,共13页
Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeol... Syngas to ethanol, consisting of dimethyl ether(DME) carbonylation to methyl acetate(MA) over zeolites and MA hydrogenation to ethanol on copper catalyst, has been developed in recent years.DME carbonylation over zeolites, a key step in this new process, has attracted increasing attention due to the high reaction efficiency and promising industrial application.In recent years, continuous efforts have been made on improving the activity and stability of the zeolites.From a mechanistic point of view, DME carbonylation to MA, involving the formation of C–C bond, is achieved via the Koch-type CO insertion into DME within the 8-member ring(8-MR) pores of zeolites, typically HMOR and HZSM-35.The unique geometric configuration of the 8-MR pore endowed the formation of the key intermediate(acetyl, CH3CO^*), possibly by a spatial confinement of the transition state during CO insertion into the surface O–CH3 group.This review article summarizes the main progress on zeolite-catalyzed DME carbonylation, including reaction kinetics and mechanism, theoretical calculations, and experimental strategies developed for populating acid sites and engineering pore structure of the zeolites in order to enhance the overall performance. 展开更多
关键词 DME CARBONYLATION Zeolites MORDENITE ACID SITES Reaction mechanism DEACTIVATION
下载PDF
Excavator Energy-saving Efficiency Based on Diesel Engine Cylinder Deactivation Technology 被引量:15
18
作者 YANG Jing QUAN Long YANG Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期897-904,共8页
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po... The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators. 展开更多
关键词 diesel engine cylinder deactivation hydraulic excavator ENERGY-SAVING
下载PDF
O2(1△g) Deactivation on O2-adsorbed Metal Surfaces
19
作者 杜姝彦 冷静 +2 位作者 杨何平 沙国河 张存浩 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期256-260,I0003,共6页
A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g)... A flow system was set up to measure the quenching probability ~ of O2(1△g) on various O2- adsorbed metal surfaces including Cu, Cr, Ni, and Ag. increased with both the duration of the experiment and the O2(1△g) concentration. After several hours evacuation to a few Pa, γ can return to its original value. A deactivation mechanism of O2(1△g) is suggested by considering first the weak chemisorption of O2(1△g) on the surface adsorption sites, followed by the near resonant energy transfer between the gas phase O2(1△g) and surface O2(1△g). A phenomenological model in accord with the experimental fact has been proposed together with relevant kinetic equations. 展开更多
关键词 Singlet oxygen Surface quenching Deactivation probability
下载PDF
Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe_5C_2 catalyst and why and how to introduce promoters 被引量:9
20
作者 Di Wang Bingxu Chen +2 位作者 Xuezhi Duan De Chen Xinggui Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期911-916,共6页
As a sustainable and short-flow process, iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps, i.e., Fischer–Tropsch-to-Olefins (FTO), has received increasing attention. Howe... As a sustainable and short-flow process, iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps, i.e., Fischer–Tropsch-to-Olefins (FTO), has received increasing attention. However, its fundamental understanding is usually limited by the complex crystal phase composition in addition to the interferences of the promoter effects and inevitable catalyst deactivation. Until recently, the combination of multiple in-situ/ex-situ characterizations and theoretical studies has evidenced Hägg iron carbide (χ-Fe5C2) as the dominant active phase of iron-based Fischer–Tropsch catalysts. This perspective attempts to review and discuss some recent progresses on the nature of χ-Fe5C2catalyst and the crucial effects of promoters on the FTO performance from theoretical and experimental viewpoints, aiming to provide new insights into the rational design of iron-based FTO catalysts. © 2016 Science Press 展开更多
关键词 Carbides Catalyst deactivation Catalysts Iron OLEFINS Phase composition
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部