The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability o...The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.展开更多
Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Model tests...Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Model tests and simulations are carried out to validate the numerical methods used in assessing the stability under the dead ship condition. This is done in three stages. Firstly, the uncoupled roll mathematical model (1 DOF) is adopted to calculate the roll motion based on the irregular beam waves and the steady wind. Secondly, a drift free experiment is conducted to measure the roll motion under irregular beam waves with zero speed, and then two restrained experiments with counter weights and four springs are performed under the same condition. Finally, the effects of the drift and sway motions on stability under the dead ship condition are then verified by experimental results, and the results of the numerical methods are compared to the results of the model experiments. It is concluded that more accurate numerical methods could be developed for assessing the direct stability under the dead ship condition.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509124 and 51681340360)the Hi-Tech Ship Project of the Ministry of Industry and Technology(Grant No.2016[26])
文摘The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.
基金supported by Ministry of Industry and Informa-tion Technology of China(Grant No.[2012]533)
文摘Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Model tests and simulations are carried out to validate the numerical methods used in assessing the stability under the dead ship condition. This is done in three stages. Firstly, the uncoupled roll mathematical model (1 DOF) is adopted to calculate the roll motion based on the irregular beam waves and the steady wind. Secondly, a drift free experiment is conducted to measure the roll motion under irregular beam waves with zero speed, and then two restrained experiments with counter weights and four springs are performed under the same condition. Finally, the effects of the drift and sway motions on stability under the dead ship condition are then verified by experimental results, and the results of the numerical methods are compared to the results of the model experiments. It is concluded that more accurate numerical methods could be developed for assessing the direct stability under the dead ship condition.