The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
The robust stability analysis of discrete time systems with fast time varying uncertainties is considered in this paper. The necessary and sufficient conditions for quadratic stability are presented. Moreover, the s...The robust stability analysis of discrete time systems with fast time varying uncertainties is considered in this paper. The necessary and sufficient conditions for quadratic stability are presented. Moreover, the stability robustness index is introduced as the measurement of the stability robustness. For the systems with given uncertain parameter bounds, checking the necessary and sufficient conditions and calculating the stability robust index are converted to solving minimax problems. It is shown that the maximization can be reduced to comparisons between the functional values of the corners when the parameter region is bounded by hyperpolydredon, and any local minimum value in the minimization is exactly the global minimum.展开更多
In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are s...In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.展开更多
The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems o...The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results.展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network a...Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.展开更多
The stabilization problem of distributed proportional-integral-derivative(PID)controllers for general first-order multi-agent systems with time delay is investigated in the paper.The closed-loop multi-input multi-outp...The stabilization problem of distributed proportional-integral-derivative(PID)controllers for general first-order multi-agent systems with time delay is investigated in the paper.The closed-loop multi-input multi-output(MIMO)framework in frequency domain is firstly introduced for the multi-agent system.Based on the matrix theory,the whole system is decoupled into several subsystems with respect to the eigenvalues of the Laplacian matrix.Considering that the eigenvalues may be complex numbers,the consensus problem of the multi-agent system is transformed into the stabilizing problem of all the subsystems with complex coefficients.For each subsystem with complex coefficients,the range of admissible proportional gains is analytically determined.Then,the stabilizing region in the space of integral gain and derivative gain for a given proportional gain value is also obtained in an analytical form.The entire stabilizing set can be determined by sweeping proportional gain in the allowable range.The proposed method is conducted for general first-order multi-agent systems under arbitrary topology including undirected and directed graph topology.Besides,the results in the paper provide the basis for the design of distributed PID controllers satisfying different performance criteria.The simulation examples are presented to check the validity of the proposed control strategy.展开更多
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-depe...We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are model...The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach.展开更多
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Mar...This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.展开更多
Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to ...Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to easily compute scheduling length and simplify scheduling analysis. Based on this, a new hierarchical RBTPN model is proposed. The model introduces the definition of transition border set, and represents it as an abstract transition. The abstract transition possesses all resources of the set, and has the highest priority of each resource; the cxecution time of abstract transition is the longest time of all possible scheduling sequences. According to the characteristics and assemblage condition of RBTPN, the refinement conditions of transition border set are given, and the conditions ensure the correction of scheduling analysis. As a result, it is easy for us to understand the scheduling model and perform scheduling analysis.展开更多
In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems wi...In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.展开更多
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consens...This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.展开更多
For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequali...For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequalities solvable by an LMI-based iterative algorithm. Compared with the conventional state-feedback controller, the proposed controller can achieve better robust control performance since the delayed state is utilized as additional feedback information and the parameters of the proposed controllers are changed synchronously with the dynamical characteristic of the system. This design method was also extended to the case where only delayed state is available for the controller. The example of balancing an inverted pendulum on a cart demonstrates the effectiveness and applicability of the proposed design methods.展开更多
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
文摘The robust stability analysis of discrete time systems with fast time varying uncertainties is considered in this paper. The necessary and sufficient conditions for quadratic stability are presented. Moreover, the stability robustness index is introduced as the measurement of the stability robustness. For the systems with given uncertain parameter bounds, checking the necessary and sufficient conditions and calculating the stability robust index are converted to solving minimax problems. It is shown that the maximization can be reduced to comparisons between the functional values of the corners when the parameter region is bounded by hyperpolydredon, and any local minimum value in the minimization is exactly the global minimum.
基金supported by the National Natural Science Foundation of China(61273200,61273152,61202111,61304052,51407088)the Science Foundation of Education Office of Shandong Province of China(ZR2011FM07,BS2015DX018)
文摘In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.
基金supported by the National Natural Science Foundation of China(Grants 11972241 and 11572212)
文摘The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results.
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.
基金the National Natural Science Foundation of China (60474076)Natural Science Foundationof Jiangxi Province, China (2007GZS0899)Scientific Research Foundation of Jiangxi Provincial Education Department, China(GJJ08238).
文摘Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
基金partly supported by the National Key Research and Development Plan Intelligent Robot Key Project(2018YFB1308000)the Key Research and Development Program of Zhejiang Province(2020C01109)。
文摘The stabilization problem of distributed proportional-integral-derivative(PID)controllers for general first-order multi-agent systems with time delay is investigated in the paper.The closed-loop multi-input multi-output(MIMO)framework in frequency domain is firstly introduced for the multi-agent system.Based on the matrix theory,the whole system is decoupled into several subsystems with respect to the eigenvalues of the Laplacian matrix.Considering that the eigenvalues may be complex numbers,the consensus problem of the multi-agent system is transformed into the stabilizing problem of all the subsystems with complex coefficients.For each subsystem with complex coefficients,the range of admissible proportional gains is analytically determined.Then,the stabilizing region in the space of integral gain and derivative gain for a given proportional gain value is also obtained in an analytical form.The entire stabilizing set can be determined by sweeping proportional gain in the allowable range.The proposed method is conducted for general first-order multi-agent systems under arbitrary topology including undirected and directed graph topology.Besides,the results in the paper provide the basis for the design of distributed PID controllers satisfying different performance criteria.The simulation examples are presented to check the validity of the proposed control strategy.
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology,Korean (Grant Nos. 2012-0000479 and 2011-0009273)the Korea Healthcare Technology R & D Project,Ministry of Health & Welfare,Republic of Korea (Grant No. A100054)
文摘We consider multi-agent systems with time-varying delays and switching interconnection topologies. By con- structing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by using various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金partially supported by National Natural Science Foundation of China(61290322,61273222,61322303,61473248,61403335)Hebei Province Applied Basis Research Project(15967629D)Top Talents Project of Hebei Province and Yanshan University Project(13LGA020)
基金supported by the National Natural Science Foundation of China(6107402761273083)
文摘The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China (No.60074007).
文摘This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.
文摘Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to easily compute scheduling length and simplify scheduling analysis. Based on this, a new hierarchical RBTPN model is proposed. The model introduces the definition of transition border set, and represents it as an abstract transition. The abstract transition possesses all resources of the set, and has the highest priority of each resource; the cxecution time of abstract transition is the longest time of all possible scheduling sequences. According to the characteristics and assemblage condition of RBTPN, the refinement conditions of transition border set are given, and the conditions ensure the correction of scheduling analysis. As a result, it is easy for us to understand the scheduling model and perform scheduling analysis.
基金This work was supported by the National Natural Science Foundation of China(No.60343001, 60221301) and the Foundation of Harbin EngineeringUniversity.
文摘In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
基金supported in part by the National Natural Science Foundation of China (NSFC)(61703086, 61773106)the IAPI Fundamental Research Funds (2018ZCX27)
文摘This paper is concerned with consensus of a secondorder linear time-invariant multi-agent system in the situation that there exists a communication delay among the agents in the network.A proportional-integral consensus protocol is designed by using delayed and memorized state information.Under the proportional-integral consensus protocol,the consensus problem of the multi-agent system is transformed into the problem of asymptotic stability of the corresponding linear time-invariant time-delay system.Note that the location of the eigenvalues of the corresponding characteristic function of the linear time-invariant time-delay system not only determines the stability of the system,but also plays a critical role in the dynamic performance of the system.In this paper,based on recent results on the distribution of roots of quasi-polynomials,several necessary conditions for Hurwitz stability for a class of quasi-polynomials are first derived.Then allowable regions of consensus protocol parameters are estimated.Some necessary and sufficient conditions for determining effective protocol parameters are provided.The designed protocol can achieve consensus and improve the dynamic performance of the second-order multi-agent system.Moreover,the effects of delays on consensus of systems of harmonic oscillators/double integrators under proportional-integral consensus protocols are investigated.Furthermore,some results on proportional-integral consensus are derived for a class of high-order linear time-invariant multi-agent systems.
文摘For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H∞ feedback controller was formulated in nonlinear matrix inequalities solvable by an LMI-based iterative algorithm. Compared with the conventional state-feedback controller, the proposed controller can achieve better robust control performance since the delayed state is utilized as additional feedback information and the parameters of the proposed controllers are changed synchronously with the dynamical characteristic of the system. This design method was also extended to the case where only delayed state is available for the controller. The example of balancing an inverted pendulum on a cart demonstrates the effectiveness and applicability of the proposed design methods.