期刊文献+
共找到222,160篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of debris flow control effect and hazard assessment in Xinqiao Gully,Wenchuan M_(s)8.0 earthquake area based on numerical simulation 被引量:1
1
作者 Chang Yang Yong-bo Tie +3 位作者 Xian-zheng Zhang Yan-feng Zhang Zhi-jie Ning Zong-liang Li 《China Geology》 CAS CSCD 2024年第2期248-263,共16页
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff... Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events. 展开更多
关键词 Landslide debris flow Hazard assessment Numerical simulation OpenLISEM Prevention and control project Wenchuan M_(s)8.0 earthquake Xinqiao Gully Sichuan province Geological hazards survey engineering
下载PDF
Protective effects of baffles with different positions,row spacings,heights on debris flow impact
2
作者 SUN Xinpo CHEN Min +5 位作者 BI Yuzhang ZHENG Lu CHE Chi XU Ao TIAN Zijian JIANG Zheyuan 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2352-2367,共16页
The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural haza... The baffle effectively slowed down debris flow velocity,reduced its kinetic energy,and significantly shortened the distance of debris flow movement.Consequently,they are widely used for protection against natural hazards such as landslides and mudslides.This study,based on the threedimensional DEM(Discrete Element Method),investigated the impact of different baffle positions on debris flow protection.Debris flow velocity and kinetic energy variations were studied through single-factor experiments.Suitable baffle positions were preliminarily selected by analyzing the influence of the first-row baffle position on the impact force and accumulation mass of debris flow.Subsequently,based on the selected baffle positions and four factors influencing the effectiveness of baffle protection(baffle position(P),baffle height(h),row spacing(S_(r)),and angle of transit area(α)),an orthogonal design was employed to further explore the optimal arrangement of baffles.The research results indicate that the use of a baffle structure could effectively slow down the motion velocity of debris flows and dissipate their energy.When the baffle is placed in the transit area,the impact force on the first-row baffle is greater than that when the baffle is placed in the deposition area.Similarly,when the baffle is placed in the transit area,the obstruction effect on debris flow mass is also greater than that when the baffle is placed in the deposition area.Through orthogonal experimental range analysis,when the impact on the first row of baffles is used as the evaluation criterion,the importance of each influencing factor is ranked asα>P>S_(r)>h.When the mass of debris flow behind the baffle is regarded as the evaluation criterion,the rank is changed to P>α>S_(r)>h.The experimental simulation results show that the optimal baffle arrangement is:P_(5),S_(r)=16,α=35°,h=9. 展开更多
关键词 debris flow BAFFLE Protective effect Discrete element
下载PDF
Debris flow runout behaviors considering the influences of densely populated buildings
3
作者 ZHANG Shuai FANG Zhe +4 位作者 DAI Cong WANG Shuairong PENG Jingyu ZHOU Yiling SHEN Ping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2696-2712,共17页
Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition ... Debris flows pose serious risks to communities in mountainous areas,often resulting in large losses of human life and property.The impeding presence of urban buildings often affects the runout behavior and deposition of debris flows.But the impact of different building densities and sizes on debris flow dynamics has yet to be quantified to guide urban planning in debris flow risk zones.This study focused on a debris flow that occurred in Zhouqu County,Gansu Province,China on August 7th,2010,which was catastrophic and destroyed many buildings.The FLO-2D software was used to simulate this debris flow in two scenarios,i.e.the presence and the absence of buildings,to obtain debris-flow intensity parameters.The developed model was then used to further analyze the influence of large buildings and narrow channels within the urban environment.The simulation results show that considering the presence of buildings in the simulation is essential for accurate assessment of debris flow intensity and deposition distribution.The layout of buildings in the upstream urban area,such as large buildings or parallel buildings which form narrow channels,can affect the flow velocity and depth of debris flow heading towards downstream buildings.To mitigate damage to downstream buildings,the relative spacing(d/a)between upstream and downstream buildings should not exceed a value of two and should ideally be even lower.These findings provide valuable insights for improving the resistance of mountainous cities to urban debris flows. 展开更多
关键词 debris flow Risk Building blockage effect Zhouqu Urban layout
下载PDF
Debris Fan Produced by Failure of Canyon-Blocking Pyroclastic Flows
4
作者 Michael L. Cummings 《Journal of Water Resource and Protection》 CAS 2024年第5期328-360,共33页
Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 t... Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands. 展开更多
关键词 Outburst Flood Mount Mazama debris Fan Canyon Blockage Pyroclastic flows
下载PDF
Dynamic-based model for calculating the boulder impact force in debris flow
5
作者 YANG Chaoping ZHANG Shaojie +2 位作者 YIN Yueping YANG Hongjuan WEI Fangqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1930-1940,共11页
The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the... The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures. 展开更多
关键词 debris flow Impact force Boulder collision Dynamic-based model Engineering design
下载PDF
Discharge evolution law of debris flow based on a sharp bend physical modeling test
6
作者 LU Ming SUN Hao +3 位作者 LIU Jinfeng Abrar HUSSAIN SHANG Yuqi FU Hang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1904-1915,共12页
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th... For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel. 展开更多
关键词 debris flow discharge Erosion effect Bend channel Curvature radius
下载PDF
Socio-scientific quantification of the comprehensive benefits of debris flow mitigation measures for villages in western Sichuan, China
7
作者 DENG Ting XU Pei +4 位作者 LI Ming LU Yafeng WANG Yukuan LI Zhengyang SHRAVAN Kumar Ghimire 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1598-1612,共15页
Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the speci... Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development. 展开更多
关键词 Mitigation measures Comprehensive benefit evaluation debris flow Mountain development Rural areas
下载PDF
Dynamic response of buildings under debris flow impact
8
作者 LIU Huan FAN Xiaoyi +1 位作者 TIAN Shujun DENG Xin 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1581-1597,共17页
This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology co... This study employs the smoothed particle hydrodynamics–finite element method(SPH–FEM) coupling numerical method to investigate the impact of debris flow on reinforced concrete(RC)-frame buildings. The methodology considers the variables of debris flow depth and velocity and introduces the intensity index IDV(IDV = DV) to evaluate three different levels of debris flow impact intensity. The primary focus of this study is to investigate the dynamic response and failure mechanism of RC-frame buildings under debris flow impact, including structural failure patterns, impact force and column displacement. The results show that under a highintensity impact, a gradual collapse process of the RCframe building can be observed, and the damage mode of the frame column reflects shear failure or plastic hinge failure mechanism. First, the longitudinal infill walls are damaged owing to their low out-of-plane flexural capacity;the critical failure intensity index IDV value is approximately 7.5 m2/s. The structure cannot withstand debris flows with an intensity index IDV greater than 16 m2/s, and it is recommended that the peak impact force should not exceed 2100 k N. The impact damage ability of debris flow on buildings mostly originates from the impact force of the frontal debris flow, with the impact force of the debris flow body being approximately 42% lower than that of the debris flow head. Finally, a five-level classification system for evaluating the damage status of buildings is proposed based on the numerical simulation and investigation results of the disaster site. 展开更多
关键词 SPH–FEM method debris flow BUILDINGS The intensity index Dynamic response
下载PDF
Interaction Mechanisms between Natural Debris Flow and Rigid Barrier Deflectors:A New Perspective for Rational Design and Optimal Arrangement
9
作者 Yu Huang Beilei Liu +1 位作者 Dianlei Feng Hao Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1679-1699,共21页
Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflector... Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters. 展开更多
关键词 Rigid barrier deflectors deflector angle single-barrier dual-barrier arrangements viscous debris flow over-spilling delta-plus-SPH
下载PDF
Modelling of debris-flow susceptibility and propagation: a case study from Northwest Himalaya
10
作者 Hamza DAUD Javed Iqbal TANOLI +5 位作者 Sardar Muhammad ASIF Muhammad QASIM Muhammad ALI Junaid KHAN Zahid Imran BHATTI Ishtiaq Ahmad Khan JADOON 《Journal of Mountain Science》 SCIE CSCD 2024年第1期200-217,共18页
The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study are... The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure. 展开更多
关键词 North Pakistan debris flow flow-R Propagation Susceptibility mapping debris-flow inventory Weighted Overlay Method
下载PDF
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
11
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 debris flow Water–sediment separation structure Grille spacing Performance regulation effect
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
12
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis debris flow susceptibility
下载PDF
Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin,China
13
作者 ZHOU Yonghao HU Xiewen +6 位作者 XI Chuanjie WEN Hong CAO Xichao JIN Tao ZHOU Ruichen ZHANG Yu GONG Xueqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1231-1245,共15页
Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited applica... Machine learning(ML)-based prediction models for mapping hazard(e.g.,landslide and debris flow)susceptibility have been widely developed in recent research.However,in some specific areas,ML models have limited application because of the uncertainties in identifying negative samples.The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows(GDFs)and is characterized by a prominent landform featuring deep gullies.Considering the limitations of the ML model,we developed and compared two combined statistical models(FA-WE and FA-IC)based on factor analysis(FA),weight of evidence(WE),and the information content(IC)method.The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation.The results show that the FA-IC model has the best performance.The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream,on both sides of the valley in the middle and downstream of the Parlung Tsangpo River,and in the narrow valley section of each tributary.These areas encompass 86 gullies and are characterized as"narrow and steep". 展开更多
关键词 Parlung Tsangpo Basin Glacial debris flow Factor analysis Susceptibility mapping Weight of evidence Information content method.
下载PDF
Evaluation of the Economic Loss Caused by Zhouqu Debris Flow 被引量:4
14
作者 刘冰 宋玉玲 邓祥征 《Agricultural Science & Technology》 CAS 2012年第5期1081-1085,1132,共6页
[Objective] The aim of this study was to evaluate the economic loss caused by Zhouqu debris flow. [Method] After the large debris flows happened on August 7, 2010 in Zhouqu, Gansu Province, we collected data at the fi... [Objective] The aim of this study was to evaluate the economic loss caused by Zhouqu debris flow. [Method] After the large debris flows happened on August 7, 2010 in Zhouqu, Gansu Province, we collected data at the first time after the disaster, and then built an assessment model to estimate the potential economic losses. [Result] The total loss reached 16.57×10^2 million Yuan, in which indirect economic loss was up to 2.42×10^2 million yaun while the actual direct economic loss was around 14.15×10^2 million Yuan. [Conclusion] The proportional coefficient method is a rapid and efficient method for evaluating the indirect loss caused by disasters. 展开更多
关键词 debris flow Indirect losses Direct losses Proportional coefficient method
下载PDF
Rainfall Factors in the Prediction of Rainfall-induced Debris Flow
15
作者 孙伟 高峰 《Meteorological and Environmental Research》 CAS 2010年第2期76-79,共4页
Various rainfall factors,which affect the activities of rainfall-induced debris flow,are discussed in this paper.The factors include antecedent precipitation,current precipitation,rainfall duration,intensity,peak,and ... Various rainfall factors,which affect the activities of rainfall-induced debris flow,are discussed in this paper.The factors include antecedent precipitation,current precipitation,rainfall duration,intensity,peak,and rainfall pattern.Rainfall-induced debris flow is trigged by the co-action of current rainfall and antecedent rainfall.The advanced system of precipitation monitoring and forecasting in the rainfall-induced debris flow forecast system is established,which consists of four methods-numerical weather prediction,stationary meteorological satellite,weather radar echo and automatic weather station.Since the forecast of rainfall-induced debris flow is based on the prediction of precipitation,the prediction models objectively require more detailed and precise prediction products,which put forward a new research subject for meteorologists. 展开更多
关键词 Rainfall-induced debris flow RAINFALL PRECIPITATION Rainfall intensity China
下载PDF
Features of Sandy Debris Flows of the Yanchang Formation in the Ordos Basin and Its Oil and Gas Exploration Significance 被引量:26
16
作者 LI Xiangbo CHEN Qilin +4 位作者 LIU Huaqing WAN Yanrong WEI Lihua LIAO Jianbo LONG Liwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1187-1202,共16页
Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma S... Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting. 展开更多
关键词 sandy debris flows sedimentary characteristics oil and gas prospecting values Yanchang Formation Ordos Basin
下载PDF
Effects of loose deposits on debris flow processes in the Aizi Valley, southwest China 被引量:7
17
作者 LIU Mei ZHANG Yong +3 位作者 TIAN Shu-feng CHEN Ning-sheng MAHFUZR Rahman JAVED Iqba 《Journal of Mountain Science》 SCIE CSCD 2020年第1期156-172,共17页
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a cata... Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders. 展开更多
关键词 Aizi Valley Loose deposits debris flow process Slope debris flow Boulder blockage Discharge amplification
下载PDF
Spatial-temporal distribution of debris flow impact pressure on rigid barrier 被引量:7
18
作者 LIU Dao-chuan YOU Yong +3 位作者 LIU Jin-feng LI Yong ZHANG Guang-ze WANG Dong 《Journal of Mountain Science》 SCIE CSCD 2019年第4期793-805,共13页
Grain composition plays a vital role in impact pressure of debris flow. Current approaches treat debris flow as uniform fluid and almost ignore its granular effects. A series of flume experiments have been carried out... Grain composition plays a vital role in impact pressure of debris flow. Current approaches treat debris flow as uniform fluid and almost ignore its granular effects. A series of flume experiments have been carried out to explore the granular influence on the impact process of debris flow by using a contact surface pressure gauge sensor(Tactilus~?, produced by Sensor Products LLC). It is found that the maximum impact pressure for debris flow of low density fluctuates drastically with a long duration time while the fluctuation for flow of high density is short in time, respectively presenting logarithmic and linear form in longitudinal attenuation. This can be ascribed to the turbulence effect in the former and grain collisions and grainfluid interaction in the latter. The horizontal distribution of the impact pressure can be considered as the equivalent distribution. For engineering purposes, the longitudinal distribution of the pressure can be generalized to a triangular distribution, from which a new impact method considering granular effects is proposed. 展开更多
关键词 debris flow Impact force GRAIN composition SPATIO-TEMPORAL distribution Dynamic coefficient
下载PDF
Experimental Research of Reinforced Concrete Buildings Struck by Debris Flow in Mountain Areas of Western China 被引量:8
19
作者 ZHANG Yu WEI Fangqiang WANG Qing 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期645-650,共6页
It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation const... It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed. 展开更多
关键词 debris flow impact load dynamic response simulation experiment ARCHITECTURE
下载PDF
Using Fuzzy Relations and GIS Method to Evaluate Debris Flow Hazard 被引量:10
20
作者 SONG Shujun ZHANG Baolei +1 位作者 FENG Wenlan ZHOU Wancun 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期875-881,共7页
The study area, located in the southeast of Tibet along the Sichuan-Tibet highway, is a part of Palongzangbu River basin where mountain hazards take place frequently. On the ground of field surveying, historical data ... The study area, located in the southeast of Tibet along the Sichuan-Tibet highway, is a part of Palongzangbu River basin where mountain hazards take place frequently. On the ground of field surveying, historical data and previous research, a total of 31 debris flow gullies are identified in the study area and 5 factors are chosen as main parameters for evaluating the hazard of debris flows in this study. Spatial analyst functions of geographic information system (GIS) are utilized to produce debris flow inventory and parameter maps. All data are built into a spatial database for evaluating debris flow hazard. Integrated with GIS techniques,the fuzzy relation method is used to calculate the strength of relationship between debris flow inventory and parameters of the database. With this methodology,a hazard map of debris flows is produced. According to this map,6.6% of the study area is classified as very high hazard, 7.3% as high hazard,8.4% as moderate hazard,32. 1% as low hazard and 45.6% as very low hazard or non-hazard areas. After validating the results, this methodology is ultimately confirmed to be available. 展开更多
关键词 fuzzy relations geographic information system (GIS) debris flows hazard evaluation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部