This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the ...This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.展开更多
The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an i...The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an interdecadal variability in the mid-1970s. The intensity of the East Asia monsoon is weaker after this transition. Moreover the intensity and location of subtropical high that is an important component in East Asia monsoon system also shows interdecadal variation obviously. It is the interdecadal variation in atmospheric circulation that causes the drought over North China and flooding along the middle and lower reaches of the Yangtze River after the mid-1970s.展开更多
In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reana-lyzed and co...In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reana-lyzed and combined daily rainfall during 1980 ~ 1993. To make the onset date line as close as possible to the previous work, the earliest onset date limits have to be applied for the regions with different latitude and the daily mean datasets have to be smoothed by space before calculation, therefore their space-resolution is reduced to about 3 longitude ×1 latitude. The results show that the multiyear mean summer monsoon onset date lines are quite similar to each other. Compared with the one from the reanalysis, the 14-year average onset date line form combination is obviously improved in the southern Sichuan Basin and the correlation between observed and combined onset date is also slightly higher over the Huaihe valley and Northeast China. Since daily rainfall combination also improved the long term daily mean and standard deviation through the pentad CMAP, if no better daily dataset is available, such a kind of daily rainfall combination can be used to get reasonable result in the Indian monsoon region without sufficient observatories or over the North Pacific without any ground obser-vation at all in future study.展开更多
The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFD...The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AGCM) Atmospheric Model version 2.1 (AM2.1).The results show that EUBC causes an enhanced EASM.The resulted enhanced southwesterly brings more moisture supply from the Bay of Bengal,which causes an increase in precipitation over the Yangtze River valley,northeastem China,the eastern part of the Yellow River valley,and the Tibetan Plateau.Diagnostic examination suggests that EUBC induces enhanced tropospheric heating over most of the Eurasian Continent through a propagating wave train and horizontal air temperature advection.This phenomenon results in intensified thermal contrast between land and ocean,which accounts for the enhanced EASM.Moreover,reductions in EUBC emission in 1992 may have contributed to decadal weakening of the EASM in the early 1990s.展开更多
The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil m...The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity;the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northern part of China. However, during the weak years, the summer rainfall belt is largely located over the mid-and lower-reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.展开更多
Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemisph...Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemispheric part of South-East Asia is demonstrated. The detection of regime shifts is made possible by using a new comprehensive dataset of daily precipitation records (South-East Asian Climate Assessment and Dataset) and applying a novel Bayesian approach for regime shift detection. After the detected regime shift event in the mid-1970s, significant changes in precipitation distribution occurred in the Northern Hemispheric regions—Indochina Peninsula and the Philippines. More specifically, dry days became up to 10% more frequent in some regions. However, no precipitation regime shift is detected in Southern Hemisphere regions—Java and Northern Australia, were the number of observed dry days increased gradually.展开更多
This study presents a comprehensive analysis of the synergistic impacts of the Atlantic multidecadal oscillation(AMO)and Pacific decadal oscillation(PDO)on the interdecadal variations of summer rainfall in Northeast A...This study presents a comprehensive analysis of the synergistic impacts of the Atlantic multidecadal oscillation(AMO)and Pacific decadal oscillation(PDO)on the interdecadal variations of summer rainfall in Northeast Asia.Following the construction of four probable scenarios under various combinations of the AMO and PDO phases,it is found that when the AMO and PDO are out of phase,both of them induce a strong or weak East Asian summer monsoon and a low or high pressure system over Northeast Asia through atmospheric teleconnection,which results in significant wet or dry conditions over the whole of Northeast Asia through the effects of superimposition.In contrast,when the AMO and PDO are in-phase,they induce moderate and regional wet or dry conditions in Northeast Asia,and only a slightly strong or weak East Asian summer monsoon through the effects of cancellation.During the mid-1960 s-1990 s,a period of drought first began in Northeast Asia under a negative AMO and negative PDO in the mid-1960 s,which then increased in severity under a negative AMO and positive PDO in the 1980 s,before finally coming to an end under a positive AMO and negative PDO in the late 1990 s.The interdecadal predictability of summer rainfall in Northeast Asia may reside in the interdecadal behavior of the North Atlantic and Pacific Oceans.展开更多
In this study, an interdecadal shift of summer precipitation over northern East Asia (NEA) was identified, demon-strating that summer precipitation decreased abruptly after 1998/99. The synchronous shift in summer m...In this study, an interdecadal shift of summer precipitation over northern East Asia (NEA) was identified, demon-strating that summer precipitation decreased abruptly after 1998/99. The synchronous shift in summer moisture budget and water vapor transport over NEA was further investigated by using the NCEP/NCAR reanalysis data. The results indicate that water vapor transported northward into NEA from three low-latitude paths was limited because most water vapor was transported eastward. Water vapor transported from the westerly path in mid-high (WMH) lat-itudes exhibited significant correlations with summer precipitation in NEA and experienced a significant adjustment in the late 1990s. Regarding the spatial distributions of water vapor transport, less input was found through the west-ern boundary while more output occurred through the eastern boundary of NEA, and zonal water vapor transport fluxes mainly concentrated at the low to middle levels, which led to the summer precipitation shift in NEA around the late 1990s. Furthermore, it is also confirmed that the wind anomalies (rather than the moisture disturbance) as the dominant internal dynamic factor and Pacific Decadal Oscillation/Atlantic Multidecadal Oscillation (PDO/AMO) as possible external force played important roles in influencing the water vapor transport and causing the summer pre-cipitation shift over NEA in the late 1990s.展开更多
The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning...The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning 1979-2022,our results show that the increased rainfall amounts are associated with a more pronounced Mongolian cyclone(MC)in July−August,a manifestation of a portion of the Eurasian barotropic Rossby wave train.Sea surface temperature(SST)anomalies in the North Atlantic(NA)regulate this wave train,with SST increases leading to its amplification.Somewhat independently,a delayed end to the rainy season in September is related to an enhanced anticyclone over the Kuril Islands(ACKI)in the Russian Far East.This anticyclone originates in the Arctic region,possibly induced by the loss of sea ice in the East Siberian Sea,a condition that can be detected two months in advance.The stronger MC and ACKI jointly contribute to the observed enhancement in the East Asian summer monsoon in NEA since 2000 by facilitating ascending motion and moisture transport.Therefore,the SST anomaly in the NA,which is responsible for the intensified rainfall in the rainy season in NEA,coupled with the sea ice conditions in the East Siberian Sea,provides a potential prediction source for the retreat of the rainy season.展开更多
Based on the reanalysis data fromNCEP/NCAR and other observational data, interannualvariability of Mascarene high (MH) and Australian high (AH) from 1970 to 1999 is examined. It is shown that interannual variability o...Based on the reanalysis data fromNCEP/NCAR and other observational data, interannualvariability of Mascarene high (MH) and Australian high (AH) from 1970 to 1999 is examined. It is shown that interannual variability of MH is dominated by the Antarctic oscillation (AAO), when the circumpolar low in the high southern lati-tudes deepens, the intensity of MH will be intensified. On the other hand, AH is correlated by AAO as well as El Nio and South Oscillation (ENSO), the intensity of AH will be inten-sified when El Nio occurs. Both correlation analysis andcase study demonstrate that summer rainfall over East Asia is closely related to MH and AH. When MH intensifies from boreal spring to summer (i.e. from austral autumn to winter)there is more rainfall over regions from the Yangtze Rivervalley to Japan, in contrast, less rainfall is found over south-ern China and western Pacific to the east of Taiwan, andmost of regions in mid-latitudes of East Asia. Compared with MH, the effect of AH on summer rainfall in East Asia is lim-ited to localized regions, there is more rainfall over southern China with the intensification of AH. The results in this study show that AAO is a strong signal on interannual time-scale, which plays an important role in summer rainfall over East Asia. This discovery is of real importance to revealing the physical mechanism of interannual variability of EastAsian summer monsoon and prediction of summer precipi-tation in China.展开更多
Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterw...Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterwards; this decadal change is contained principally in the corresponding EOF3 component.However,the NCC_CGCM forecast results are quite different,which reveal the "+-+-" pattern before 1999 and the "-+-+" pattern afterwards.Meanwhile,the probability of improving NCC_CGCM's forecast accuracy based on these key SST areas is discussed,and the dynamic-statistics combined forecast scheme is constructed for increasing the information of decadal change contained in the summer precipitation in East Asia.The independent sample forecast results indicate that this forecasting scheme can effectively modify the NCC_CGCM's decadal change information contained in the summer precipitation in East Asia(especially in the area of 30°N–55°N).The ACC is 0.25 and ACR is 61% for the forecasting result based on the V SST area,and the mean ACC is 0.03 and ACR is 51% for the seven key areas,which are better than NCC_CGCM's system error correction results(ACC is -0.01 and ACR is 49%).Besides,the modified forecast results also provide the information that the precipitation anomaly in East Asia mainly shows the "+-+" pattern before 1999 and the "-+-" pattern afterwards.展开更多
The modern atmospheric observation and literatural historical drought-flood records were used to extract the inter-decadal signals of dry-wet modes in eastern China and reveal the possible relationship of global and C...The modern atmospheric observation and literatural historical drought-flood records were used to extract the inter-decadal signals of dry-wet modes in eastern China and reveal the possible relationship of global and China temperature changes associated with the East Asian summer monsoon advances.A climate pattern of "wet-north and dry-south" in eastern China and cool period in China and globe are associated with the strong summer monsoon that can advance further to the northernmost part in the East Asian monsoon region.On the contrary,a climate pattern of "dry-north and wet-south" in eastern China and a warm period in China and globe are associated with the weaker summer monsoon that only reaches the southern part in the region.An interdecadal oscillation with the timescale about 60 years was found dominating in both the dry-wet mode index series of the East Asian summer monsoon and the global temperature series after the secular climate states and long-term trend over inter-centennial timescales have been removed.展开更多
Using the monthly mean NCEP/NCAR reanalysis data and the monthly rainfall observations at 160 rain gauge stations of China during 1961 1999, and based on major characteristics of the atmospheric circulation over East ...Using the monthly mean NCEP/NCAR reanalysis data and the monthly rainfall observations at 160 rain gauge stations of China during 1961 1999, and based on major characteristics of the atmospheric circulation over East Asia and the western Pacific, a simple index for the East Asian subtropical summer monsoon (EASSM) is defined. The relationship between this index and summer rainfall in China and associated circulation features are examined. A comparison is made between this index and other monsoon indices. The results indicate that the index defined herein is reflective of variations of both the thermal low pressure centered in Siberia and the subtropical ridge over the western Pacific. It epitomizes the intensity of the EASSM and the variability of summer rainfall along the Yangtze River. Analysis shows that the Siberian low has a greater effect on the rainfall than the subtropical ridge, suggesting that the summer rainfall variability over the eastern parts of China is to a large extent affected by anomalies of the atmospheric circulation and cold air development in the midlatitudes. Taking into account of the effects of both the Siberian low and the subtropical ridge can better capture the summer rainfall anomalies of China. The index exhibits interannual and decadal variabilities, with high-index values occurring mainly in the 1960s and 1970s and low-index values in the 1980s and 1990s. When the EASSM index is low, the Siberian low and the subtropical ridge are weaker, and northerly wind anomalies appear at low levels over the midlatitudes and subtropics of East Asia, whereas southwesterly wind anomalies dominate in the upper troposphere over the tropics and subtropics of Asia and the western Pacific. The northerly wind anomalies bring about frequent cold air disturbances from the midlatitudes of East Asia, strengthening the convergence and ascending motions along the Meiyu front, and result in an increase of summer rainfall over the Yangtze River.展开更多
In the late 1920’s,a mega-drought in China resulted in widespread crop failure and famine.Sufficient evidence suggests that this drought belonged to a dry period ranging from approximately 1922 to 1932.To understand ...In the late 1920’s,a mega-drought in China resulted in widespread crop failure and famine.Sufficient evidence suggests that this drought belonged to a dry period ranging from approximately 1922 to 1932.To understand the characteristics and the cause of this persistent drought period,we combined various data,including observations,tree ring proxy data,reanalysis data,simulation results of the Fifth Phase of the Coupled Model Intercomparison Project and numerical downscaling simulations.The results show that during 1922-1932,most regions in eastern China suffered from a persistent drought that lasted for six years,and the maximum negative precipitation anomaly reached−1.5 times the standard deviation.Given its spatial coverage,duration,and strength,the 1920s drought was unique for the 20th century.The 1920s drought was primarily caused by internal variability.Strong easterlies in lower latitudes,strong monsoon circulation,and abnormally high geopotential heights at middle and upper levels were responsible for the 1920s drought conditions in eastern China;these drought conditions could be further attributed to the joint impact of the Atlantic Multidecadal Oscillation,Pacific Decadal Oscillation and Indian Ocean Basin Mode.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41105046)the National Basic Research Program of China (Grant No. 2010CB950403)the Chinese Academy of Sciences (Grant No. XDA05090000)
文摘This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.
基金Natural Science Foundation of China (40365001) Intramural research program of Yunnan University (2002Q014ZH)
文摘The interdecadal variability of the East Asia summer monsoon during 1951~1999 is analyzed by using two different East Asia monsoon indices. The results agree on the point that the East Asia monsoon has undergone an interdecadal variability in the mid-1970s. The intensity of the East Asia monsoon is weaker after this transition. Moreover the intensity and location of subtropical high that is an important component in East Asia monsoon system also shows interdecadal variation obviously. It is the interdecadal variation in atmospheric circulation that causes the drought over North China and flooding along the middle and lower reaches of the Yangtze River after the mid-1970s.
基金National Science Foundation of China (No.49875020) and National Key Programme for developing Basic Sciences (No. G1999043803)
文摘In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reana-lyzed and combined daily rainfall during 1980 ~ 1993. To make the onset date line as close as possible to the previous work, the earliest onset date limits have to be applied for the regions with different latitude and the daily mean datasets have to be smoothed by space before calculation, therefore their space-resolution is reduced to about 3 longitude ×1 latitude. The results show that the multiyear mean summer monsoon onset date lines are quite similar to each other. Compared with the one from the reanalysis, the 14-year average onset date line form combination is obviously improved in the southern Sichuan Basin and the correlation between observed and combined onset date is also slightly higher over the Huaihe valley and Northeast China. Since daily rainfall combination also improved the long term daily mean and standard deviation through the pentad CMAP, if no better daily dataset is available, such a kind of daily rainfall combination can be used to get reasonable result in the Indian monsoon region without sufficient observatories or over the North Pacific without any ground obser-vation at all in future study.
基金supported by special projects of China Meteorological Administration(GYHY201006022)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05090406)
文摘The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AGCM) Atmospheric Model version 2.1 (AM2.1).The results show that EUBC causes an enhanced EASM.The resulted enhanced southwesterly brings more moisture supply from the Bay of Bengal,which causes an increase in precipitation over the Yangtze River valley,northeastem China,the eastern part of the Yellow River valley,and the Tibetan Plateau.Diagnostic examination suggests that EUBC induces enhanced tropospheric heating over most of the Eurasian Continent through a propagating wave train and horizontal air temperature advection.This phenomenon results in intensified thermal contrast between land and ocean,which accounts for the enhanced EASM.Moreover,reductions in EUBC emission in 1992 may have contributed to decadal weakening of the EASM in the early 1990s.
文摘The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity;the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northern part of China. However, during the weak years, the summer rainfall belt is largely located over the mid-and lower-reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.
文摘Recent changes in precipitation regime in South-East Asia are a subject of ongoing discussion. In this article, for the first time, evidence of a precipitation regime shift during the mid-1970s in the Northern Hemispheric part of South-East Asia is demonstrated. The detection of regime shifts is made possible by using a new comprehensive dataset of daily precipitation records (South-East Asian Climate Assessment and Dataset) and applying a novel Bayesian approach for regime shift detection. After the detected regime shift event in the mid-1970s, significant changes in precipitation distribution occurred in the Northern Hemispheric regions—Indochina Peninsula and the Philippines. More specifically, dry days became up to 10% more frequent in some regions. However, no precipitation regime shift is detected in Southern Hemisphere regions—Java and Northern Australia, were the number of observed dry days increased gradually.
基金Supported by the National Natural Science Foundation of China(41875104 and 41991284)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100304)。
文摘This study presents a comprehensive analysis of the synergistic impacts of the Atlantic multidecadal oscillation(AMO)and Pacific decadal oscillation(PDO)on the interdecadal variations of summer rainfall in Northeast Asia.Following the construction of four probable scenarios under various combinations of the AMO and PDO phases,it is found that when the AMO and PDO are out of phase,both of them induce a strong or weak East Asian summer monsoon and a low or high pressure system over Northeast Asia through atmospheric teleconnection,which results in significant wet or dry conditions over the whole of Northeast Asia through the effects of superimposition.In contrast,when the AMO and PDO are in-phase,they induce moderate and regional wet or dry conditions in Northeast Asia,and only a slightly strong or weak East Asian summer monsoon through the effects of cancellation.During the mid-1960 s-1990 s,a period of drought first began in Northeast Asia under a negative AMO and negative PDO in the mid-1960 s,which then increased in severity under a negative AMO and positive PDO in the 1980 s,before finally coming to an end under a positive AMO and negative PDO in the late 1990 s.The interdecadal predictability of summer rainfall in Northeast Asia may reside in the interdecadal behavior of the North Atlantic and Pacific Oceans.
基金Supported by the National Natural Science Foundation of China(41575082,41530531,and 41475064)National Key Research and Development Program of China(2017YFC1502303)
文摘In this study, an interdecadal shift of summer precipitation over northern East Asia (NEA) was identified, demon-strating that summer precipitation decreased abruptly after 1998/99. The synchronous shift in summer moisture budget and water vapor transport over NEA was further investigated by using the NCEP/NCAR reanalysis data. The results indicate that water vapor transported northward into NEA from three low-latitude paths was limited because most water vapor was transported eastward. Water vapor transported from the westerly path in mid-high (WMH) lat-itudes exhibited significant correlations with summer precipitation in NEA and experienced a significant adjustment in the late 1990s. Regarding the spatial distributions of water vapor transport, less input was found through the west-ern boundary while more output occurred through the eastern boundary of NEA, and zonal water vapor transport fluxes mainly concentrated at the low to middle levels, which led to the summer precipitation shift in NEA around the late 1990s. Furthermore, it is also confirmed that the wind anomalies (rather than the moisture disturbance) as the dominant internal dynamic factor and Pacific Decadal Oscillation/Atlantic Multidecadal Oscillation (PDO/AMO) as possible external force played important roles in influencing the water vapor transport and causing the summer pre-cipitation shift over NEA in the late 1990s.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.U2242205,41830969)the S&T Development Fund of CAMS(2022KJ008)the Basic Scientific Research and Operation Foundation of CAMS(2021Z004).
文摘The East Asian summer monsoon in Northeast Asia(NEA)has experienced an increase in summer rainfall and a delayed end to the rainy season after 2000,suggesting a trend of enhancement.Based on the data analyses spanning 1979-2022,our results show that the increased rainfall amounts are associated with a more pronounced Mongolian cyclone(MC)in July−August,a manifestation of a portion of the Eurasian barotropic Rossby wave train.Sea surface temperature(SST)anomalies in the North Atlantic(NA)regulate this wave train,with SST increases leading to its amplification.Somewhat independently,a delayed end to the rainy season in September is related to an enhanced anticyclone over the Kuril Islands(ACKI)in the Russian Far East.This anticyclone originates in the Arctic region,possibly induced by the loss of sea ice in the East Siberian Sea,a condition that can be detected two months in advance.The stronger MC and ACKI jointly contribute to the observed enhancement in the East Asian summer monsoon in NEA since 2000 by facilitating ascending motion and moisture transport.Therefore,the SST anomaly in the NA,which is responsible for the intensified rainfall in the rainy season in NEA,coupled with the sea ice conditions in the East Siberian Sea,provides a potential prediction source for the retreat of the rainy season.
基金the National Key Basic Development Program (Grant No. G1998040900Part I) and the National Natural Science Foundation of China (Grant Nos. 40125014 and 40075020)
文摘Based on the reanalysis data fromNCEP/NCAR and other observational data, interannualvariability of Mascarene high (MH) and Australian high (AH) from 1970 to 1999 is examined. It is shown that interannual variability of MH is dominated by the Antarctic oscillation (AAO), when the circumpolar low in the high southern lati-tudes deepens, the intensity of MH will be intensified. On the other hand, AH is correlated by AAO as well as El Nio and South Oscillation (ENSO), the intensity of AH will be inten-sified when El Nio occurs. Both correlation analysis andcase study demonstrate that summer rainfall over East Asia is closely related to MH and AH. When MH intensifies from boreal spring to summer (i.e. from austral autumn to winter)there is more rainfall over regions from the Yangtze Rivervalley to Japan, in contrast, less rainfall is found over south-ern China and western Pacific to the east of Taiwan, andmost of regions in mid-latitudes of East Asia. Compared with MH, the effect of AH on summer rainfall in East Asia is lim-ited to localized regions, there is more rainfall over southern China with the intensification of AH. The results in this study show that AAO is a strong signal on interannual time-scale, which plays an important role in summer rainfall over East Asia. This discovery is of real importance to revealing the physical mechanism of interannual variability of EastAsian summer monsoon and prediction of summer precipi-tation in China.
基金supported by the National Basic Research Program of China(Grant No.2012CB955203)the National Natural Science Foundation of China(Grant Nos.41205040,41105055)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterwards; this decadal change is contained principally in the corresponding EOF3 component.However,the NCC_CGCM forecast results are quite different,which reveal the "+-+-" pattern before 1999 and the "-+-+" pattern afterwards.Meanwhile,the probability of improving NCC_CGCM's forecast accuracy based on these key SST areas is discussed,and the dynamic-statistics combined forecast scheme is constructed for increasing the information of decadal change contained in the summer precipitation in East Asia.The independent sample forecast results indicate that this forecasting scheme can effectively modify the NCC_CGCM's decadal change information contained in the summer precipitation in East Asia(especially in the area of 30°N–55°N).The ACC is 0.25 and ACR is 61% for the forecasting result based on the V SST area,and the mean ACC is 0.03 and ACR is 51% for the seven key areas,which are better than NCC_CGCM's system error correction results(ACC is -0.01 and ACR is 49%).Besides,the modified forecast results also provide the information that the precipitation anomaly in East Asia mainly shows the "+-+" pattern before 1999 and the "-+-" pattern afterwards.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA0509400)the National Natural Science Foundation of China (40805036)
文摘The modern atmospheric observation and literatural historical drought-flood records were used to extract the inter-decadal signals of dry-wet modes in eastern China and reveal the possible relationship of global and China temperature changes associated with the East Asian summer monsoon advances.A climate pattern of "wet-north and dry-south" in eastern China and cool period in China and globe are associated with the strong summer monsoon that can advance further to the northernmost part in the East Asian monsoon region.On the contrary,a climate pattern of "dry-north and wet-south" in eastern China and a warm period in China and globe are associated with the weaker summer monsoon that only reaches the southern part in the region.An interdecadal oscillation with the timescale about 60 years was found dominating in both the dry-wet mode index series of the East Asian summer monsoon and the global temperature series after the secular climate states and long-term trend over inter-centennial timescales have been removed.
基金Supported by the National Natural Science Foundation of China(40625014)National Basic Research Program of China (2009CB421402)the Chinese COPES project(GYHY200706005).
文摘Using the monthly mean NCEP/NCAR reanalysis data and the monthly rainfall observations at 160 rain gauge stations of China during 1961 1999, and based on major characteristics of the atmospheric circulation over East Asia and the western Pacific, a simple index for the East Asian subtropical summer monsoon (EASSM) is defined. The relationship between this index and summer rainfall in China and associated circulation features are examined. A comparison is made between this index and other monsoon indices. The results indicate that the index defined herein is reflective of variations of both the thermal low pressure centered in Siberia and the subtropical ridge over the western Pacific. It epitomizes the intensity of the EASSM and the variability of summer rainfall along the Yangtze River. Analysis shows that the Siberian low has a greater effect on the rainfall than the subtropical ridge, suggesting that the summer rainfall variability over the eastern parts of China is to a large extent affected by anomalies of the atmospheric circulation and cold air development in the midlatitudes. Taking into account of the effects of both the Siberian low and the subtropical ridge can better capture the summer rainfall anomalies of China. The index exhibits interannual and decadal variabilities, with high-index values occurring mainly in the 1960s and 1970s and low-index values in the 1980s and 1990s. When the EASSM index is low, the Siberian low and the subtropical ridge are weaker, and northerly wind anomalies appear at low levels over the midlatitudes and subtropics of East Asia, whereas southwesterly wind anomalies dominate in the upper troposphere over the tropics and subtropics of Asia and the western Pacific. The northerly wind anomalies bring about frequent cold air disturbances from the midlatitudes of East Asia, strengthening the convergence and ascending motions along the Meiyu front, and result in an increase of summer rainfall over the Yangtze River.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20020201)the National Key R&D Program of China (Grant No. 2016YFA0600403)+2 种基金the General Project of the National Natural Science Foundation of China (Grant No. 41875134)the National Key R&D Program of China (Grant No. 2016YFA0602501)the Science and Technology Program of Yunnan “Impact assessments and monitorforecasting technology of meteorological disasters for Yunnan Plateau characteristic agriculture under climate change” (Grant No. 2018BC007)
文摘In the late 1920’s,a mega-drought in China resulted in widespread crop failure and famine.Sufficient evidence suggests that this drought belonged to a dry period ranging from approximately 1922 to 1932.To understand the characteristics and the cause of this persistent drought period,we combined various data,including observations,tree ring proxy data,reanalysis data,simulation results of the Fifth Phase of the Coupled Model Intercomparison Project and numerical downscaling simulations.The results show that during 1922-1932,most regions in eastern China suffered from a persistent drought that lasted for six years,and the maximum negative precipitation anomaly reached−1.5 times the standard deviation.Given its spatial coverage,duration,and strength,the 1920s drought was unique for the 20th century.The 1920s drought was primarily caused by internal variability.Strong easterlies in lower latitudes,strong monsoon circulation,and abnormally high geopotential heights at middle and upper levels were responsible for the 1920s drought conditions in eastern China;these drought conditions could be further attributed to the joint impact of the Atlantic Multidecadal Oscillation,Pacific Decadal Oscillation and Indian Ocean Basin Mode.