期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Immobilization of Decellularized Valve Scaffolds with Arg-Gly-Asp-containing Peptide to Promote Myofibroblast Adhesion 被引量:5
1
作者 史嘉玮 董念国 孙宗全 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第4期503-507,共5页
The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellulariz... The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellularized with trypsin/EDTA, and detergent Triton X-100. With the help of a coupling reagent Sulfo-LC-SPDP, the valve scaffolds were immobilized with glycine-arginine-glycine-aspartic acid-serine-proline-cysteine (GRGDSPC) peptide. X-ray photoelectron spectroscopy (XPS) was used for surface structure analysis. Myofibroblasts harvested from rats were seeded onto the valve scaffolds. Cell count by using microscopy and modified MTT assay were performed to assess cell adhesion. Based on the spectra of XPS, the conjugation of GRGDSPC peptide with decellularized valve scaffolds was confirmed. Both cell count and MTT assay showed that myofibroblasts were much easier to adhere to the modified valve scaffolds, which was also confirmed histologically. Our findings suggest that it is feasible to immobilize RGD-containing peptides onto decellularized valve scaffolds. And the technique can effectively promote cell adhesion, which is beneficial for in vitro tissue engineering of heart valves. 展开更多
关键词 arginine-glycine-aspartic acid decellularized valve scaffold cell adhesion tissue engineered heart valve (TEHV)
下载PDF
Immobilization of RGD Peptidcs onto Decellularized Valve Scaffolds to Promote Cell Adhesion
2
作者 史嘉玮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期686-690,共5页
Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspa... Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspartic acid) containing peptides, called GRGDSPC peptide. Myofibroblasts harvested from rats were seeded onto them. Based on the spectra of X-ray photoelectron spectroscopy, we could find conjugation of GRGDSPC peptide and the scaffolds. Cell count by both microscopy and MTT assay showed that myofibroblasts were easier to adhere to the modified scaffolds. It is proved that it is feasible to immobilize RGD peptides onto decellularized valve scaffolds, and effective to promote cell adhesion, which is beneficial for constructing tissue engineering heart valves in vitro. 展开更多
关键词 RGD peptide decellularized valve scaffold cell adhesion tissue engineering heart valve
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部