Business Analytics is one of the vital processes that must be incorpo-rated into any business.It supports decision-makers in analyzing and predicting future trends based on facts(Data-driven decisions),especially when...Business Analytics is one of the vital processes that must be incorpo-rated into any business.It supports decision-makers in analyzing and predicting future trends based on facts(Data-driven decisions),especially when dealing with a massive amount of business data.Decision Trees are essential for business ana-lytics to predict business opportunities and future trends that can retain corpora-tions’competitive advantage and survival and improve their business value.This research proposes a tree-based predictive model for business analytics.The model is developed based on ranking business features and gradient-boosted trees.For validation purposes,the model is tested on a real-world dataset of Universal Bank to predict personal loan acceptance.It is validated based on Accuracy,Precision,Recall,and F-score.The experimentfindings show that the proposed model can predict personal loan acceptance efficiently and effectively with better accuracy than the traditional tree-based models.The model can also deal with a massive amount of business data and support corporations’decision-making process.展开更多
露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模...露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。展开更多
选取新疆中天山沙垄以西地区开展铅锌矿成矿预测研究,将决策树技术引入到成矿预测中。通过区域成矿规律分析,选取不同构造单元中数据较为完整、具有代表性的典型矿床,建立综合信息预测模型,采用决策树技术中的ID3算法构建决策树,在ERDAS...选取新疆中天山沙垄以西地区开展铅锌矿成矿预测研究,将决策树技术引入到成矿预测中。通过区域成矿规律分析,选取不同构造单元中数据较为完整、具有代表性的典型矿床,建立综合信息预测模型,采用决策树技术中的ID3算法构建决策树,在ERDAS IMAG ING 8.7平台上建立分类决策树,开展铅锌远景区预测。经野外验证,预测区与已知矿化区吻合度较高,证实该方法在成矿预测中是可行的。展开更多
Expert system plays an important role in port machine diagnosis, which aims at automatic equipment test for higher availability and efficiency of port operations. In this study, a port machine diagnosis expert system ...Expert system plays an important role in port machine diagnosis, which aims at automatic equipment test for higher availability and efficiency of port operations. In this study, a port machine diagnosis expert system is proposed based on multi-reasoning mechanism. Relying on the knowledge acquired from the experienced experts in the port machine engineering, the system builds a library of relative experience and a set of rules of reasoning and estimating. Multi-reasoning mechanism that simulates the decision-making process of domain experts is employed to achieve reliable diagnosis results. The reasoning machine integrates artificial neural network, uncertain decision making and decision tree, which complements each other by sustainable growing voting mechanism. The effect of this multi-reasoning mechanism is evaluated and validated by means of Matthew's Correlation Coefficient (MCC). The system incorporating the mechanism is successfully designed, implemented and applied in Shanghai Port.展开更多
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v...Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared.展开更多
Purpose-The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel Monte-Carlo sampl...Purpose-The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel Monte-Carlo sampling algorithms that provably increase the AI potential.Design/methodology/approach-In the current paper the authors set up a mathematical framework,state and prove a version of a Geiringer-like theorem that is very well-suited for the development of Mote-Carlo sampling algorithms to cope with randomness and incomplete information to make decisions.Findings-This work establishes an important theoretical link between classical population genetics,evolutionary computation theory and model free reinforcement learning methodology.Not only may the theory explain the success of the currently existing Monte-Carlo tree sampling methodology,but it also leads to the development of novel Monte-Carlo sampling techniques guided by rigorous mathematical foundation.Practical implications-The theoretical foundations established in the current work provide guidance for the design of powerful Monte-Carlo sampling algorithms in model free reinforcement learning,to tackle numerous problems in computational intelligence.Originality/value-Establishing a Geiringer-like theorem with non-homologous recombination was a long-standing open problem in evolutionary computation theory.Apart from overcoming this challenge,in a mathematically elegant fashion and establishing a rather general and powerful version of the theorem,this work leads directly to the development of novel provably powerful algorithms for decision making in the environment involving randomness,hidden or incomplete information.展开更多
基金Taif University Researchers Supporting Project number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
文摘Business Analytics is one of the vital processes that must be incorpo-rated into any business.It supports decision-makers in analyzing and predicting future trends based on facts(Data-driven decisions),especially when dealing with a massive amount of business data.Decision Trees are essential for business ana-lytics to predict business opportunities and future trends that can retain corpora-tions’competitive advantage and survival and improve their business value.This research proposes a tree-based predictive model for business analytics.The model is developed based on ranking business features and gradient-boosted trees.For validation purposes,the model is tested on a real-world dataset of Universal Bank to predict personal loan acceptance.It is validated based on Accuracy,Precision,Recall,and F-score.The experimentfindings show that the proposed model can predict personal loan acceptance efficiently and effectively with better accuracy than the traditional tree-based models.The model can also deal with a massive amount of business data and support corporations’decision-making process.
文摘露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。
文摘选取新疆中天山沙垄以西地区开展铅锌矿成矿预测研究,将决策树技术引入到成矿预测中。通过区域成矿规律分析,选取不同构造单元中数据较为完整、具有代表性的典型矿床,建立综合信息预测模型,采用决策树技术中的ID3算法构建决策树,在ERDAS IMAG ING 8.7平台上建立分类决策树,开展铅锌远景区预测。经野外验证,预测区与已知矿化区吻合度较高,证实该方法在成矿预测中是可行的。
文摘Expert system plays an important role in port machine diagnosis, which aims at automatic equipment test for higher availability and efficiency of port operations. In this study, a port machine diagnosis expert system is proposed based on multi-reasoning mechanism. Relying on the knowledge acquired from the experienced experts in the port machine engineering, the system builds a library of relative experience and a set of rules of reasoning and estimating. Multi-reasoning mechanism that simulates the decision-making process of domain experts is employed to achieve reliable diagnosis results. The reasoning machine integrates artificial neural network, uncertain decision making and decision tree, which complements each other by sustainable growing voting mechanism. The effect of this multi-reasoning mechanism is evaluated and validated by means of Matthew's Correlation Coefficient (MCC). The system incorporating the mechanism is successfully designed, implemented and applied in Shanghai Port.
文摘Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared.
基金This work has been sponsored by EPSRC EP/D003/05/1“Amorphous Computing”and EPSRC EP/I009809/1“Evolutionary Approximation Algorithms for Optimization:Algorithm Design and Complexity Analysis”Grants.
文摘Purpose-The purpose of this paper is to establish a version of a theorem that originated from population genetics and has been later adopted in evolutionary computation theory that will lead to novel Monte-Carlo sampling algorithms that provably increase the AI potential.Design/methodology/approach-In the current paper the authors set up a mathematical framework,state and prove a version of a Geiringer-like theorem that is very well-suited for the development of Mote-Carlo sampling algorithms to cope with randomness and incomplete information to make decisions.Findings-This work establishes an important theoretical link between classical population genetics,evolutionary computation theory and model free reinforcement learning methodology.Not only may the theory explain the success of the currently existing Monte-Carlo tree sampling methodology,but it also leads to the development of novel Monte-Carlo sampling techniques guided by rigorous mathematical foundation.Practical implications-The theoretical foundations established in the current work provide guidance for the design of powerful Monte-Carlo sampling algorithms in model free reinforcement learning,to tackle numerous problems in computational intelligence.Originality/value-Establishing a Geiringer-like theorem with non-homologous recombination was a long-standing open problem in evolutionary computation theory.Apart from overcoming this challenge,in a mathematically elegant fashion and establishing a rather general and powerful version of the theorem,this work leads directly to the development of novel provably powerful algorithms for decision making in the environment involving randomness,hidden or incomplete information.