期刊文献+
共找到6,857篇文章
< 1 2 250 >
每页显示 20 50 100
Applying the Technology Acceptance Model (TAM) in Information Technology System to Evaluate the Adoption of Decision Support System
1
作者 Md Azhad Hossain Anamika Tiwari +3 位作者 Sanchita Saha Ashok Ghimire Md Ahsan Ullah Imran Rabeya Khatoon 《Journal of Computer and Communications》 2024年第8期242-256,共15页
With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-... With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use. 展开更多
关键词 Information Technology decision support System Business Organization in USA Technology Acceptance Model
下载PDF
Design and Implementation of the Employment Management Decision Support System based on Machine Learning
2
作者 Zhigang Ma 《Journal of Electronic Research and Application》 2024年第5期134-140,共7页
To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system coll... To address the challenges of current college student employment management,this study designed and implemented a machine learning-based decision support system for college student employment management.The system collects and analyzes multidimensional data,uses machine learning algorithms for prediction and matching,provides personalized employment guidance for students,and provides decision support for universities and enterprises.The research results indicate that the system can effectively improve the efficiency and accuracy of employment guidance,promote school-enterprise cooperation,and achieve a win-win situation for all parties. 展开更多
关键词 Machine learning Employment of college students decision support system Data analysis
下载PDF
A behavior and physiology-based decision support tool to predict thermal comfort and stress in non-pregnant,mid-gestation,and late-gestation sows
3
作者 Betty R.McConn Allan P.Schinckel +4 位作者 Lindsey Robbins Brianna N.Gaskill Angela R.Green‑Miller Donald C.Lay Jr Jay S.Johnson 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期814-826,共13页
Background:Although thermal indices have been proposed for swine,none to our knowledge differentiate by reproductive stage or predict thermal comfort using behavioral and physiological data.The study objective was to ... Background:Although thermal indices have been proposed for swine,none to our knowledge differentiate by reproductive stage or predict thermal comfort using behavioral and physiological data.The study objective was to develop a behavior and physiology-based decision support tool to predict thermal comfort and stress in multiparous(3.28±0.81)non-pregnant(n=11),mid-gestation(n=13),and late-gestation(n=12)sows.Results:Regression analyses were performed using PROC MIXED in SAS 9.4 to determine the optimal environmental indicator[dry bulb temperature(TDB)and dew point]of heat stress(HS)in non-pregnant,mid-gestation,and lategestation sows with respiration rate(RR)and body temperature(TB)successively used as the dependent variable in a cubic function.A linear relationship was observed for skin temperature(T_(S))indicating that TDB rather than the sow HS response impacted T_(S)and so T_(S)was excluded from further analyses.Reproductive stage was significant for all analyses(P<0.05).Heat stress thresholds for each reproductive stage were calculated using the inflections points of RR for mild HS and TB for moderate and severe HS.Mild HS inflection points differed for non-pregnant,mid-gestation,and late gestation sows and occurred at 25.5,25.1,and 24.0℃,respectively.Moderate HS inflection points differed for non-pregnant,mid-gestation,and late gestation sows and occurred at 28.1,27.8,and 25.5℃,respectively.Severe HS inflection points were similar for non-pregnant and mid-gestation sows(32.9℃)but differed for late-gestation sows(30.8℃).These data were integrated with previously collected behavioral thermal preference data to estimate the TDB that non-pregnant,mid-gestation,and late-gestation sows found to be cool(TDB<TDB preference range),comfortable(TDB=TDB preference range),and warm(TDB preference range<TDB<mild HS).Conclusions:The results of this study provide valuable information about thermal comfort and thermal stress thresholds in sows at three reproductive stages.The development of a behavior and physiology-based decision support tool to predict thermal comfort and stress in non-pregnant,mid-gestation,and late-gestation sows is expected to provide swine producers with a more accurate means of managing sow environments. 展开更多
关键词 decision support GESTATION Heat stress Management SOWS Thermal index
下载PDF
Light-Weighted Decision Support Framework for Selecting Cloud Service Providers
4
作者 Abdulmajeed Aljuhani Abdulaziz Alhubaishy +1 位作者 Mohammad Khalid Imam Rahmani Ahmad A.Alzahrani 《Computers, Materials & Continua》 SCIE EI 2023年第2期4293-4317,共25页
Multi-criteria decision making(MCDM)is a technique used to achieve better outcomes for some complex business-related problems,whereby the selection of the best alternative can be made in as many cases as possible.This... Multi-criteria decision making(MCDM)is a technique used to achieve better outcomes for some complex business-related problems,whereby the selection of the best alternative can be made in as many cases as possible.This paper proposes a model,the multi-criteria decision support method,that allows both service providers and consumers to maximize their profits while preserving the best matching process for resource allocation and task scheduling.The increasing number of service providers with different service provision capabilities creates an issue for consumers seeking to select the best service provider.Each consumer seeks a service provider based on various preferences,such as price,service quality,and time to complete the tasks.In the literature,the problem is viewed from different perspectives,such as investigating how to enhance task scheduling and the resource allocation process,improve consumers’trust,and deal with network problems.This paper offers a novel model that considers the preferences of both service providers and consumers to find the best available service provider for each consumer.First,the model adopts the best-worst method(BWM)to gather and prioritize tasks based on consumers’and service providers’preferences.Then,the model calculates and matches similarities between the sets of tasks from the consumer’s side with the sets of tasks from the provider’s side to select the best service provider for each consumer using the two proposed algorithms.The complexity of the two algorithms is found to be O(n3). 展开更多
关键词 Best worst method BWM cloud service provider decision support methods
下载PDF
Artificial Intelligence Enabled Decision Support System on E-Healthcare Environment
5
作者 B.Karthikeyan K.Nithya +1 位作者 Ahmed Alkhayyat Yousif Kerrar Yousif 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2299-2313,共15页
In today’s digital era,e-healthcare systems exploit digital technologies and telecommunication devices such as mobile devices,computers and the inter-net to provide high-quality healthcare services.E-healthcare decis... In today’s digital era,e-healthcare systems exploit digital technologies and telecommunication devices such as mobile devices,computers and the inter-net to provide high-quality healthcare services.E-healthcare decision support sys-tems have been developed to optimize the healthcare services and enhance a patient’s health.These systems enable rapid access to the specialized healthcare services via reliable information,retrieved from the cases or the patient histories.This phenomenon reduces the time taken by the patients to physically visit the healthcare institutions.In the current research work,a new Shuffled Frog Leap Optimizer with Deep Learning-based Decision Support System(SFLODL-DSS)is designed for the diagnosis of the Cardiovascular Diseases(CVD).The aim of the proposed model is to identify and classify the cardiovascular diseases.The proposed SFLODL-DSS technique primarily incorporates the SFLO-based Feature Selection(SFLO-FS)approach for feature subset election.For the pur-pose of classification,the Autoencoder with Gated Recurrent Unit(AEGRU)model is exploited.Finally,the Bacterial Foraging Optimization(BFO)algorithm is employed tofine-tune the hyperparameters involved in the AEGRU method.To demonstrate the enhanced performance of the proposed SFLODL-DSS technique,a series of simulations was conducted.The simulation outcomes established the superiority of the proposed SFLODL-DSS technique as it achieved the highest accuracy of 98.36%.Thus,the proposed SFLODL-DSS technique can be exploited as a proficient tool in the future for the detection and classification of CVD. 展开更多
关键词 E-HEALTHCARE decision support system cardiovascular disease feature selection deep learning
下载PDF
Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa—A Review
6
作者 Aloysius Mubangizi Joshua Wanyama +1 位作者 Nicholas Kiggundu Prossie Nakawuka 《Agricultural Sciences》 CAS 2023年第2期219-239,共21页
Irrigation in lowland rice production systems in Sub-Saharan Africa (SSA) is mainly based on traditional surface irrigation methods with continuous flooding practices. This irrigation method ends up using a lot more w... Irrigation in lowland rice production systems in Sub-Saharan Africa (SSA) is mainly based on traditional surface irrigation methods with continuous flooding practices. This irrigation method ends up using a lot more water that would have otherwise been used to open more land and be used in other water-requiring sectors. Various studies suggest Alternate Wetting and Drying (AWD) as an alternative practice for water management that reduces water use without significantly affecting yield. However, this practice has not been well adopted by the farmers despite its significant benefits of reduced total water use. Improving the adoption of AWD using irrigation Decision Support Systems (DSSs) helps the farmer on two fronts;to know “how much water to apply” and “when to irrigate”, which is very critical in maximizing productivity. This paper reviews the applicability of DSSs using AWD in lowland rice production systems in Sub-Saharan Africa. 展开更多
关键词 Lowland Rice Irrigation Scheduling Forecasting decision support Systems Rice Production Farmer-Led Irrigation AWD
下载PDF
Optimizing Vaccine Access: A Web-Based Scheduling System with Geo-Tagging Integration and Decision Support for Local Health Centers
7
作者 Jayson Angelo Batoon Keno Cruz Piad 《Open Journal of Applied Sciences》 CAS 2023年第5期720-730,共11页
The system created aims to produce an online vaccination appointment scheduling system with geo-tagging integration and a decision-support mechanism for neighborhood health clinics. With a decision support mechanism t... The system created aims to produce an online vaccination appointment scheduling system with geo-tagging integration and a decision-support mechanism for neighborhood health clinics. With a decision support mechanism that suggests the essential vaccines based on their account details, it is made to meet the unique vaccination needs of each patient. The system includes immunizations that are accessible locally, and patients and midwives can manage their own corresponding information through personal accounts. Viewers of websites can visualize the distribution of vaccines by purok thanks to geotagging. The Agile Scrum Methodology was modified by the researchers for early delivery, change flexibility, and continual system improvement in order to accomplish the study’s main goal. In order to assess the system’s acceptability in terms of functional adequacy, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability, it was designed in accordance with the ISO 25010 Product Software Quality Standards. Following the assessment, the system was given an average total weighted mean score of 4.62, which represents a verbal interpretation of “strongly agree”. This score demonstrates that the evaluators were in agreement that the system met the requirements of ISO 25010 for Product Software Quality Standards. 展开更多
关键词 Online Appointment Scheduling Geotagging decision support VACCINATION Neighborhood Health Clinics
下载PDF
Method of Establishing Object-Oriented System Structure for Decision Support System 被引量:2
8
作者 曹元大 胡军 管春 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期311-315,共5页
In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, an... In order to solve existing problems about the method of establishing traditional system structure of decision support system(DSS), O S chart is applied to describe object oriented system structure of general DSS, and a new method of eight specific steps is proposed to establish object oriented system structure of DSS by using the method of O S chart, which is applied successfully to the development of the DSS for the energy system ecology engineering research of the Wangheqiu country. Supplying many scientific effective computing models, decision support ways and a lot of accurate reliable decision data, the DSS plays a critical part in helping engineering researchers to make correct decisions. Because the period for developing the DSS is relatively shorter, the new way improves the efficiency of establishing DSS greatly. It also makes the DSS of system structure more flexible and easy to expand. 展开更多
关键词 decision support system object oriented technology system structure
下载PDF
Automated decision support for Hallux Valgus treatment options using anteroposterior foot radiographs 被引量:2
9
作者 Konrad Kwolek Artur Gądek +2 位作者 Kamil Kwolek Radek Kolecki Henryk Liszka 《World Journal of Orthopedics》 2023年第11期800-812,共13页
BACKGROUND Assessment of the potential utility of deep learning with subsequent image analysis to automate the measurement of hallux valgus and intermetatarsal angles from radiographs to serve as a preoperative aid in... BACKGROUND Assessment of the potential utility of deep learning with subsequent image analysis to automate the measurement of hallux valgus and intermetatarsal angles from radiographs to serve as a preoperative aid in establishing hallux valgus severity for clinical decision-making.AIM To investigate the accuracy of automated measurements of angles of hallux valgus from radiographs for further integration with the preoperative planning process.METHODS The data comprises 265 consecutive digital anteroposterior weightbearing foot radiographs.181 radiographs were utilized for training(161)and validating(20)a U-Net neural network to achieve a mean Sørensen–Dice index>97%on bone segmentation.84 test radiographs were used for manual(computer assisted)and automated measurements of hallux valgus severity determined by hallux valgus(HVA)and intermetatarsal angles(IMA).The reliability of manual and computerbased measurements was calculated using the interclass correlation coefficient(ICC)and standard error of measurement(SEM).Inter-and intraobserver reliability coefficients were also compared.An operative treatment recommendation was then applied to compare results between automated and manual angle measurements.RESULTS Very high reliability was achieved for HVA and IMA between the manual measurements of three independent clinicians.For HVA,the ICC between manual measurements was 0.96-0.99.For IMA,ICC was 0.78-0.95.Comparing manual against automated computer measurement,the reliability was high as well.For HVA,absolute agreement ICC and consistency ICC were 0.97,and SEM was 0.32.For IMA,absolute agreement ICC was 0.75,consistency ICC was 0.89,and SEM was 0.21.Additionally,a strong correlation(0.80)was observed between our approach and traditional clinical adjudication for preoperative planning of hallux valgus,according to an operative treatment algorithm proposed by EFORT.CONCLUSION The proposed automated,artificial intelligence assisted determination of hallux valgus angles based on deep learning holds great potential as an accurate and efficient tool,with comparable accuracy to manual measurements by expert clinicians.Our approach can be effectively implemented in clinical practice to determine the angles of hallux valgus from radiographs,classify the deformity severity,streamline preoperative decision-making prior to corrective surgery. 展开更多
关键词 Computer-aided diagnosis Artificial intelligence in orthopedics Automated preoperative decision support Deep learning Medical imaging
下载PDF
An Intelligent Decision Support System for Lung Cancer Diagnosis
10
作者 Ahmed A.Alsheikhy Yahia F.Said Tawfeeq Shawly 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期799-817,共19页
Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identi... Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical. 展开更多
关键词 Lung cancer artificial intelligence CNN computer-aid diagnosis HISTOGRAM image segmentation decision support systemv
下载PDF
Progress of clinical decision support systems in stroke nursing care
11
作者 Hainan Liu Lina Qi +2 位作者 Jiaojiao Wang Bo Zhao Jiaxin Mu 《Journal of Translational Neuroscience》 2023年第1期7-11,共5页
Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent... Stroke is characterized by high incidence,high recurrence,high disability,and high morbidity and mortality in China,resulting in a heavy social and clinical burden.A clinical decision support system,as an intelli-gent computer system,can assist nurses in decision-mak-ing to collect information quickly,make the most suitable personalized decisions for patients,and improve nurses’decision-making judgment and quality of care.Promoting the development and application of decision support sys-tems in stroke nursing significantly enhances the nursing staff’s work quality and patients’prognosis.Therefore,this paper reviews the research progress of domestic and international clinical decision support systems in stroke nursing care to provide other researchers with specific research directions for developing and applying decision support systems in stroke nursing care. 展开更多
关键词 clinical decision support systems STROKE nursing care
下载PDF
Decision tree support vector machine based on genetic algorithm for multi-class classification 被引量:16
12
作者 Huanhuan Chen Qiang Wang Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期322-326,共5页
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of... To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 展开更多
关键词 support vector machine (SVM) decision tree GENETICALGORITHM classification.
下载PDF
Multi-agent decision support system for missile defense based on improved PSO algorithm 被引量:5
13
作者 Zilong Cheng Li Fan Yulin Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期514-525,共12页
Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev... Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process. 展开更多
关键词 agent-based modeling missile defense system decision support system (DSS) variable neighborhood negative selection particle swarm optimization (PSO)
下载PDF
Development of a GIS-based Decision Support System for Assessing Land Use Status 被引量:6
14
作者 Ryosuke Shibasaki Kanichiro Matsumura 《Geo-Spatial Information Science》 2004年第1期72-78,共7页
The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e w... The objectives of this study are to assess land s ui tability and to predict the spatial and temporal changes in land use types (LUTs ) by using GIS-based land use management decision support system. A GIS databas e with data on climate, topography, soil characteristic, irrigation condition, f ertilizer application, and special socioeconomic activities has been developed a nd used for the evaluation of land productivity for different crops by integrati ng with a crop growth model-the erosion productivity impact calculator (EPIC). International food policy simulation model (IFPSIM) is also embedded into GIS fo r the predictions of how crop demands and crop market prices will change under a lternative policy scenarios. An inference engine (IE) including land use choice model is developed to illustrate land use choice behavior based on logit models , which allows to analyze how diversified factors ranging from climate changes, crop price changes to land management changes can affect the distribution of agr icultural land use. A test for integrated simulation is taken in each 0.1° by 0.1° grid cell to predict the change of agricultural land use types at globa l level. Global land use changes are simulated from 1992 to 2050. 展开更多
关键词 EPIC land use decision support system international trade model logitmodel
下载PDF
Review of state-of-the-art decision support systems (DSSs) for prevention and suppression of forest fires 被引量:3
15
作者 Stavros Sakellariou Stergios Tampekis +2 位作者 Fani Samara Athanassios Sfougaris Olga Christopoulou 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第6期1107-1117,共11页
Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natur... Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans. 展开更多
关键词 decision support systems Fire behavior simulation Forest fires Geographic information system Mathematical algorithms Risk management
下载PDF
A Knowledge Model-and Growth Model-Based Decision Support System for Wheat Management 被引量:3
16
作者 ZHU Yan, CAO Wei-xing, WANG Qi-meng, TIAN Yong-chao and PAN Jie(Key Laboratory of Crop Growth Regulation , Ministry of Agriculture/Nanjing Agricultural University, Nanjing 210095 , P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2003年第11期1212-1220,共9页
By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and ... By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and management indices to variety types, ecological environments and production levels were analysed and extracted, and a dynamic knowledge model with temporal and spatial characters for wheat management(WheatKnow)was developed. By adopting the soft component characteristics as non language relevance , re-utilization and portable system maintenance. and by further integrating the wheat growth simulation model(WheatGrow)and intelligent system for wheat management, a comprehensive and digital knowledge model, growth model and component-based decision support system for wheat management(MBDSSWM)was established on the platforms of Visual C++ and Visual Basic. The MBDSSWM realized the effective integration and coupling of the prediction and decision-making functions for digital crop management. 展开更多
关键词 Wheat management Knowledge model Growth model Soft component decision support system
下载PDF
Real-Time Temperature Control for High Arch Dam Based on Decision Support System 被引量:4
17
作者 井向阳 刘杏红 +1 位作者 周伟 常晓林 《Transactions of Tianjin University》 EI CAS 2014年第2期118-125,共8页
It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention... It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled. 展开更多
关键词 concrete arch dam temperature control decision support system pipe cooling MONITORING
下载PDF
Innovative Artificial Neural Networks-Based Decision Support System for Heart Diseases Diagnosis 被引量:5
18
作者 Sameh Ghwanmeh Adel Mohammad Ali Al-Ibrahim 《Journal of Intelligent Learning Systems and Applications》 2013年第3期176-183,共8页
Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience ar... Heart diagnosis is not always possible at every medical center, especially in the rural areas where less support and care, due to lack of advanced heart diagnosis equipment. Also, physician intuition and experience are not always sufficient to achieve high quality medical procedures results. Therefore, medical errors and undesirable results are reasons for a need for unconventional computer-based diagnosis systems, which in turns reduce medical fatal errors, increasing the patient safety and save lives. The proposed solution, which is based on an Artificial Neural Networks (ANNs), provides a decision support system to identify three main heart diseases: mitral stenosis, aortic stenosis and ventricular septal defect. Furthermore, the system deals with an encouraging opportunity to develop an operational screening and testing device for heart disease diagnosis and can deliver great assistance for clinicians to make advanced heart diagnosis. Using real medical data, series of experiments have been conducted to examine the performance and accuracy of the proposed solution. Compared results revealed that the system performance and accuracy are acceptable, with a heart diseases classification accuracy of 92%. 展开更多
关键词 HEART Disease DIAGNOSIS Classification Accuracy ANNS decision support System Knowledge Base
下载PDF
A Multi-Criteria Decision Support System for the Selection of Low-Cost Green Building Materials and Components 被引量:2
19
作者 Junli Yang Ibuchim Cyril B. Ogunkah 《Journal of Building Construction and Planning Research》 2013年第4期89-130,共42页
The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and... The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice. 展开更多
关键词 Analytical HIERARCHY Process (AHP) decision support System (DSS) LOW-COST Green Building Materials decision Analysis Material SELECTION Factors
下载PDF
Model based decision support system for land use changes and socio-economic assessments 被引量:1
20
作者 YU Yang CHEN Xi +4 位作者 Philipp HUTTNER Marie HINNENTHAL Andreas BRIEDEN SUN Lingxiao Markus DISSE 《Journal of Arid Land》 SCIE CSCD 2018年第2期169-182,共14页
Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementati... Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management. 展开更多
关键词 decision support system hydrological modeling ecosystem services land management socio-economic indicator Tarim River Basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部