An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, C...An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.展开更多
I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artifi...I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.展开更多
Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev...Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.展开更多
The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and...The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.展开更多
With the prevalence of the Web, most decision-makers are likely to use the Web to support their decision-making. Web-based technologies are leading a major stream of researching decision support systems (DSS). We prop...With the prevalence of the Web, most decision-makers are likely to use the Web to support their decision-making. Web-based technologies are leading a major stream of researching decision support systems (DSS). We propose a formal definition and a conceptual framework for Web-based open DSS (WODSS). The formal definition gives an overall view of WODSS, and the conceptual framework based on browser/broker/server computing mode employs the electronic market to mediate decision-makers and providers, and facilitate sharing and reusing of decision resources. We also develop an admitting model, a trading model and a competing model of electronic market in WODSS based on market theory in economics. These models reveal the key mechanisms that drive WODSS operate efficiently.展开更多
Decision Support Systems(DSS)are man-machine interaction systems,which support the de-cision-makers to solve the unstructured and semi-structured decisions,this paper advances that thefunction of problem-oriented info...Decision Support Systems(DSS)are man-machine interaction systems,which support the de-cision-makers to solve the unstructured and semi-structured decisions,this paper advances that thefunction of problem-oriented information retrieval DSS can meet the needs of enterprise’s topmanagement effectively in comparison with other information retrieval functions,in accordancewith the features of supporting information for decision.An architecture of this system is presented,which dissolves a problem put forward or recognized by the user into the problem recognized by thecomputer,forming retrieval tactics and searching the data the user needs.Designed and developedaccording to the architecture of this system,a prototype system is introduced,which is CF Econom-ic Environment Information Retrieval DSS.展开更多
For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating cur...For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating curves are combined with the HEC-6 model to investigate the effects of river engineering measures on the Elbe River system. In such situations, the uncertainty originating from the HEC-6 model is of significant importance for the reliability of the rating curves and the corresponding DSS results. This paper proposes a two-step approach to analyze the uncertainty in the rating curves and propagate it into the Elbe DSS: analytic method and Latin Hypercube simulation. Via this approach the uncertainty and sensitivity of model outputs to input parameters are successfully investigated. The results show that the proposed approach is very efficient in investigating the effect of uncertainty and can play an important role in improving decision-making under uncertainty.展开更多
Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and in...Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and intelligence models, is put forward. The intelligent dispatching system is established and the system architecture is presented. Additionally, the acquisition, representation and reasoning mechanism of reservoir dispatching knowledge are designed in detail.展开更多
Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) mode...Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) model can be built to analyze the noise information and forecast the trend of the catastrophe then to give the method or policy to defend the disease. The model system is composed of four subsystems: the noise analysis subsystem, forecast and simulation subsystem, diagnosis subsystem and second recovery subsystem. They are discussed briefly in this paper.This model can be used not only for SARS but also for other paroxysmal accidences.展开更多
Crop growth in greenhouses is basically determined by the climate variables in the environment and by the amounts of water and fertilizers supplied by irrigation.The management of these factors depends on the expertis...Crop growth in greenhouses is basically determined by the climate variables in the environment and by the amounts of water and fertilizers supplied by irrigation.The management of these factors depends on the expertise of agricultural technicians and farmers,usually assisted by control systems installed within the greenhouse.In this context,decision support features enable us to incorporate invaluable human experience so thatwe can take quick and effective decisions to ensure efficient crop growth.This work describes a real-time decision support system for greenhouse tomatoes that supports decisions at three stages–the supervision stage identifies climate sensor faults,the control stage maintains climate variables at setpoints,and the strategic stage identifies diseases affecting the crop and changes climate variables accordingly to minimize damage.The DSS was implemented by integrating a real-time rule-based tool into the control system.Experimental results show that the system increases climate control effectiveness,while providing support in preventing diseaseswhich are difficult to eradicate.The system was tested by simulating the appearance of the disease and observing the real systemresponse.The main contribution has been to demonstrate that production rules,which aremature and well-known in the artificial intelligence domain,can act as a shared technology for the whole system.This means that fault detection,temperature control and disease monitoring features are not dealt with in isolation.展开更多
文摘An AI-aided simulation system embedded in a model-based, aspiration-led decision support system NY-IEDSS is reported. The NY-IEDSS is designed for mid-term development strategic study of the Nanyang Region in Henan, China, and is getting beyond its prototype stage under the decision maker's (the end user) orientation. The integration of simulation model system, decision analysis and expert system for decision support in the system implementation was reviewed. The intent of the paper is to provide insight as to how system capability and acceptability can be enhanced by this integration. Moreover, emphasis is placed on problem orientation in applying the method.
文摘I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.
文摘Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.
文摘The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.
基金This project was supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE.
文摘With the prevalence of the Web, most decision-makers are likely to use the Web to support their decision-making. Web-based technologies are leading a major stream of researching decision support systems (DSS). We propose a formal definition and a conceptual framework for Web-based open DSS (WODSS). The formal definition gives an overall view of WODSS, and the conceptual framework based on browser/broker/server computing mode employs the electronic market to mediate decision-makers and providers, and facilitate sharing and reusing of decision resources. We also develop an admitting model, a trading model and a competing model of electronic market in WODSS based on market theory in economics. These models reveal the key mechanisms that drive WODSS operate efficiently.
文摘Decision Support Systems(DSS)are man-machine interaction systems,which support the de-cision-makers to solve the unstructured and semi-structured decisions,this paper advances that thefunction of problem-oriented information retrieval DSS can meet the needs of enterprise’s topmanagement effectively in comparison with other information retrieval functions,in accordancewith the features of supporting information for decision.An architecture of this system is presented,which dissolves a problem put forward or recognized by the user into the problem recognized by thecomputer,forming retrieval tactics and searching the data the user needs.Designed and developedaccording to the architecture of this system,a prototype system is introduced,which is CF Econom-ic Environment Information Retrieval DSS.
基金Project (No. 02CDP036) supported by the Royal Netherlands Academy of Arts and Sciences (KNAW), the Netherlands
文摘For river basin management, the reliability of the rating curves mainly depends on the accuracy and time period of the observed discharge and water level data. In the Elbe decision support system (DSS), the rating curves are combined with the HEC-6 model to investigate the effects of river engineering measures on the Elbe River system. In such situations, the uncertainty originating from the HEC-6 model is of significant importance for the reliability of the rating curves and the corresponding DSS results. This paper proposes a two-step approach to analyze the uncertainty in the rating curves and propagate it into the Elbe DSS: analytic method and Latin Hypercube simulation. Via this approach the uncertainty and sensitivity of model outputs to input parameters are successfully investigated. The results show that the proposed approach is very efficient in investigating the effect of uncertainty and can play an important role in improving decision-making under uncertainty.
文摘Based on the full use of historical reservoir dispatching information, artificial intelligence is applied to grid reservoir group dispatching. A knowledge representation method, which combines dispatching rules and intelligence models, is put forward. The intelligent dispatching system is established and the system architecture is presented. Additionally, the acquisition, representation and reasoning mechanism of reservoir dispatching knowledge are designed in detail.
文摘Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) model can be built to analyze the noise information and forecast the trend of the catastrophe then to give the method or policy to defend the disease. The model system is composed of four subsystems: the noise analysis subsystem, forecast and simulation subsystem, diagnosis subsystem and second recovery subsystem. They are discussed briefly in this paper.This model can be used not only for SARS but also for other paroxysmal accidences.
基金This research was funded by the Spanish Ministry of Science and Innovation as well as by EUERDF funds under Grant DPI2014-55932-C2-1-RThis work has been also developed within the framework of the Project IoF2020-Internet of Food and Farm 2020,funded by the Horizon 2020 Framework Programme of the European Union,Grant Agreement no.731884The authors would also like to thankfully acknowledge the contribution of the Fundacio´n Cajamar Experimental Station.
文摘Crop growth in greenhouses is basically determined by the climate variables in the environment and by the amounts of water and fertilizers supplied by irrigation.The management of these factors depends on the expertise of agricultural technicians and farmers,usually assisted by control systems installed within the greenhouse.In this context,decision support features enable us to incorporate invaluable human experience so thatwe can take quick and effective decisions to ensure efficient crop growth.This work describes a real-time decision support system for greenhouse tomatoes that supports decisions at three stages–the supervision stage identifies climate sensor faults,the control stage maintains climate variables at setpoints,and the strategic stage identifies diseases affecting the crop and changes climate variables accordingly to minimize damage.The DSS was implemented by integrating a real-time rule-based tool into the control system.Experimental results show that the system increases climate control effectiveness,while providing support in preventing diseaseswhich are difficult to eradicate.The system was tested by simulating the appearance of the disease and observing the real systemresponse.The main contribution has been to demonstrate that production rules,which aremature and well-known in the artificial intelligence domain,can act as a shared technology for the whole system.This means that fault detection,temperature control and disease monitoring features are not dealt with in isolation.