期刊文献+
共找到1,766篇文章
< 1 2 89 >
每页显示 20 50 100
INDUCTION OF DECISION TREES BASED ON A FUZZY NEURAL NETWORK 被引量:1
1
作者 Tang Bin Hu Guangrui Mao Xiaoquan (Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030) 《Journal of Electronics(China)》 2002年第1期68-70,共3页
Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can ... Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can realize the optimization of fuzzy decision trees by branch cutting, and improve the ratio of correctness and efficiency of the induction of decision trees. 展开更多
关键词 INDUCTION decision tree Fuzzy neural network
下载PDF
Assessing the performance of decision tree and neural network models in mapping soil properties 被引量:6
2
作者 Fatemeh HATEFFARD Payam DOLATI +1 位作者 Ahmad HEIDARI Ali Asghar ZOLFAGHARI 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1833-1847,共15页
To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field obs... To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area. 展开更多
关键词 Digital SOIL MAPPING SOIL properties environmental VARIABLES Artificial neural network decision tree
下载PDF
Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network 被引量:6
3
作者 Mei-Ling Huang Yung-Yan Hsu 《Journal of Biomedical Science and Engineering》 2012年第9期526-533,共8页
Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the... Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the most widely used technique to monitor the fetal health and fetal heart rate (FHR) is an important index to identify occurs of fetal distress. This study is to propose discriminant analysis (DA), decision tree (DT), and artificial neural network (ANN) to evaluate fetal distress. The results show that the accuracies of DA, DT and ANN are 82.1%, 86.36% and 97.78%, respectively. 展开更多
关键词 FETAL DISTRESS CARDIOTOCOGRAPHY (CTG) DISCRIMINANT Analysis decision tree Artificial neural network
下载PDF
Electric Power Marketing based on intelligence decision tree and artificial Neural Network
4
作者 NIU Wei-hua 《通讯和计算机(中英文版)》 2008年第1期27-30,共4页
关键词 电力市场 智能决策树 人工神经网络 数据处理
下载PDF
A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES 被引量:1
5
作者 Xu Qinzhen Yang Luxi +1 位作者 Zhao Qiangfu He Zhenya 《Journal of Electronics(China)》 2006年第4期574-579,共6页
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap... Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model. 展开更多
关键词 Intrusion detection neural network tree (NNtree Expert neural network (ENN) decision tree (DT) Self-organized feature learning
下载PDF
Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks
6
作者 A.Manju R.Kaladevi +6 位作者 Shanmugasundaram Hariharan Shih-Yu Chen Vinay Kukreja Pradip Kumar Sharma Fayez Alqahtani Amr Tolba Jin Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期993-1007,共15页
The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tum... The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves. 展开更多
关键词 Lung tumor deep wave auto encoder decision tree classifier deep neural networks extraction techniques
下载PDF
Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk
7
作者 Polin Rahman Ahmed Rifat +3 位作者 MD.IftehadAmjad Chy Mohammad Monirujjaman Khan Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期757-775,共19页
Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learni... Heart failure is now widely spread throughout the world.Heart disease affects approximately 48%of the population.It is too expensive and also difficult to cure the disease.This research paper represents machine learning models to predict heart failure.The fundamental concept is to compare the correctness of various Machine Learning(ML)algorithms and boost algorithms to improve models’accuracy for prediction.Some supervised algorithms like K-Nearest Neighbor(KNN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF),Logistic Regression(LR)are considered to achieve the best results.Some boosting algorithms like Extreme Gradient Boosting(XGBoost)and Cat-Boost are also used to improve the prediction using Artificial Neural Networks(ANN).This research also focuses on data visualization to identify patterns,trends,and outliers in a massive data set.Python and Scikit-learns are used for ML.Tensor Flow and Keras,along with Python,are used for ANN model train-ing.The DT and RF algorithms achieved the highest accuracy of 95%among the classifiers.Meanwhile,KNN obtained a second height accuracy of 93.33%.XGBoost had a gratified accuracy of 91.67%,SVM,CATBoost,and ANN had an accuracy of 90%,and LR had 88.33%accuracy. 展开更多
关键词 Heart failure prediction data visualization machine learning k-nearest neighbors support vector machine decision tree random forest logistic regression xgboost and catboost artificial neural network
下载PDF
Neural Network-Based Performance Index Model for Enterprise Goals Simulation and Forecasting
8
作者 Joe Essien Martin Ogharandukun 《Journal of Computer and Communications》 2023年第8期1-13,共13页
Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of p... Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of performance metrics is a key challenge for a huge number of firms. In order to preserve relevance and adaptability in competitive markets, it has become essential to respond proactively to complex events through informed decision-making that is supported by technology. Therefore, the objective of this study was to apply neural networks to the modeling, simulation, and forecasting of the effects of the performance indicators of Enterprise Information Systems on the achievement of corporate objectives and value creation. A set of quantifiable and sizeable conditionally independent associations were derived using a simplified joint probability distribution technique. Bayesian Neural Networks were utilized to describe the link between random variables (features) and to concisely and easily specify the joint probability distribution. The research demonstrated that Bayesian networks could effectively explore complex logical linkages by employing probability to represent uncertainty and probabilistic rules;and by applying impact models from Bayesian taxonomies to achieve learning and reasoning processes. 展开更多
关键词 neural network Bayesian neural network decision Support Predictor Forecasting decision Support Enterprise Architecture
下载PDF
FPGA-Based Network Traffic Security: Design and Implementation Using C5.0 Decision Tree Classifier 被引量:2
9
作者 Tarek Salah Sobh Mohamed Ibrahiem Amer 《Journal of Electronic Science and Technology》 CAS 2013年第4期393-403,共11页
In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of man... In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of many IDSs: hardware based from implementation point of view, network based from system type point of view, and anomaly detection from detection approach point of view. In addition, it can detect most of network attacks, such as denial of services (DOS), leakage, etc. from detection behavior point of view and can detect both internal and external intruders from intruder type point of view. Gathering these features in one IDS system gives lots of strengths and advantages of the work. The system is implemented by using field programmable gate array (FPGA), giving a more advantages to the system. A C5.0 decision tree classifier is used as inference engine to the system and gives a high detection ratio of 99.93%. 展开更多
关键词 C5.0 decision tree field programm-able gate array network monitoring network security.
下载PDF
Development of Trees Management System Using Radial Basis Function Neural Network for Rain Forecast 被引量:1
10
作者 Hasnul Auzani Khairusy Syakirin Has-Yun Farah Aniza Mohd Nazri 《Computational Water, Energy, and Environmental Engineering》 2022年第1期1-10,共10页
Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitabl... Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitable planning of farming operation. Radial Basis Function Neural Network (RBFNN) algorithm was used in this study to predict rainfall and the main focus of this study is to analyze the factor that affect</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance of neural model. This study found that the model works better the more hidden nodes and the optimum learning rate is 0.01 with the RMSE 49% and the percentage accuracy is 57%. Besides that, it is found that the meteorology data also affect the model performance. Future research can be conducted to improve the rainfall forecast of this study and improv</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the tree management system. 展开更多
关键词 tree Management Radial Basis Function Rain Prediction Artificial neural network
下载PDF
Decision feedback equalizer based on non-singleton fuzzy regular neural networks
11
作者 Song Heng Wang Chen +2 位作者 He Yin Ma Shiping Zuo Jizhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期896-900,共5页
A new equalization method is proposed in this paper for severely nonlinear distorted channels. The structure of decision feedback is adopted for the non-singleton fuzzy regular neural network that is trained by gradie... A new equalization method is proposed in this paper for severely nonlinear distorted channels. The structure of decision feedback is adopted for the non-singleton fuzzy regular neural network that is trained by gradient-descent algorithm. The model shows a much better performance on anti-jamming and nonlinear classification, and simulation is carried out to compare this method with other nonlinear channel equalization methods. The results show the method has the least bit error rate (BER). 展开更多
关键词 non-singleton fuzzy system neural network EQUALIZER decision feedback.
下载PDF
Feature Selection Using Tree Model and Classification Through Convolutional Neural Network for Structural Damage Detection 被引量:1
12
作者 Zihan Jin Jiqiao Zhang +3 位作者 Qianpeng He Silang Zhu Tianlong Ouyang Gongfa Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第3期498-518,共21页
Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree a... Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring. 展开更多
关键词 Feature selection Structural damage detection decision tree Random forest Convolutional neural network
原文传递
Predicting the Underlying Structure for Phylogenetic Trees Using Neural Networks and Logistic Regression
13
作者 Hassan W. Kayondo Samuel Mwalili 《Open Journal of Statistics》 2020年第2期239-251,共13页
Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ ... Understanding an underlying structure for phylogenetic trees is very important as it informs on the methods that should be employed during phylogenetic inference. The methods used under a structured population differ from those needed when a population is not structured. In this paper, we compared two supervised machine learning techniques, that is artificial neural network (ANN) and logistic regression models for prediction of an underlying structure for phylogenetic trees. We carried out parameter tuning for the models to identify optimal models. We then performed 10-fold cross-validation on the optimal models for both logistic regression?and ANN. We also performed a non-supervised technique called clustering to identify the number of clusters that could be identified from simulated phylogenetic trees. The trees were from?both structured?and non-structured populations. Clustering and prediction using classification techniques were?done using tree statistics such as Colless, Sackin and cophenetic indices, among others. Results from 10-fold cross-validation revealed that both logistic regression and ANN models had comparable results, with both models having average accuracy rates of over 0.75. Most of the clustering indices used resulted in 2 or 3 as the optimal number of clusters. 展开更多
关键词 Artificial neural networks LOGISTIC Regression PHYLOGENETIC tree tree STATISTICS Classification Clustering
下载PDF
Improving the Input of Classified Neural Networks Through Feature Construction
14
作者 Yang, L. Yu, Z. Huang, L. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期85-89,共5页
A general classification algorithm of neural networks is unable to obtain satisfied results because of the uncertain problems existing among the features in moot classification programs, such as interaction. With new ... A general classification algorithm of neural networks is unable to obtain satisfied results because of the uncertain problems existing among the features in moot classification programs, such as interaction. With new features constructed by optimizing decision trees of examples, the input of neural networks is improved and an optimized classification algorithm based on neural networks is presented. A concept of dispersion of a classification program is also introduced too in this paper. At the end of the paper, an analysis is made with an example. 展开更多
关键词 Feature construction neural networks DISPERSION decision trees Hyperplane.
下载PDF
A dynamical neural network approach for distributionally robust chance-constrained Markov decision process 被引量:1
15
作者 Tian Xia Jia Liu Zhiping Chen 《Science China Mathematics》 SCIE CSCD 2024年第6期1395-1418,共24页
In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms und... In this paper,we study the distributionally robust joint chance-constrained Markov decision process.Utilizing the logarithmic transformation technique,we derive its deterministic reformulation with bi-convex terms under the moment-based uncertainty set.To cope with the non-convexity and improve the robustness of the solution,we propose a dynamical neural network approach to solve the reformulated optimization problem.Numerical results on a machine replacement problem demonstrate the efficiency of the proposed dynamical neural network approach when compared with the sequential convex approximation approach. 展开更多
关键词 Markov decision process chance constraints distributionally robust optimization moment-based ambiguity set dynamical neural network
原文传递
Analysis of Soft Decision Trees for Passive-Expert Reinforcement Learning
16
作者 Jonathan Martini Daniel J. Fonseca 《American Journal of Computational Mathematics》 2022年第2期209-215,共7页
This paper explores the use of soft decision trees [1] in basic reinforcement applications to examine the efficacy of using passive-expert like networks for optimal Q-Value learning on Artificial Neural Networks (ANN)... This paper explores the use of soft decision trees [1] in basic reinforcement applications to examine the efficacy of using passive-expert like networks for optimal Q-Value learning on Artificial Neural Networks (ANN). The soft decision tree networks were built using the PyTorch machine learning and the OpenAi’s Gym environment frameworks. The conducted research study aimed at assessing the performance of soft decision tree networks on Cartpole as provided in the OpenAi Gym software package. The baseline performance metric that the soft decision tree networks were compared against was a simple Deep Neural Network using several linear layers with ReLU and Softmax activation functions for the input and output layers, respectively. All networks were trained using the Backpropagation algorithm provided generically by PyTorch’sAutograd module. 展开更多
关键词 Deep Learning Soft decision trees Passive Reinforcement Learning Recurrent neural networks
下载PDF
Possible contribution of artificial neural networks and linear discriminant analysis in recognition of patients with suspected atrophic body gastritis 被引量:5
17
作者 Edith Lahner Enzo Grossi +4 位作者 Marco Intraligi Massimo Buscema Vito D Corleto Gianfranco Delle Fave Bruno Annibale 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第37期5867-5873,共7页
AIM: To investigate whether ANNs and LDA could recognize patients with ABG in a database, containing only clinical and biochemical variables, of a pool of patients with and without ABG, by selecting the most predictiv... AIM: To investigate whether ANNs and LDA could recognize patients with ABG in a database, containing only clinical and biochemical variables, of a pool of patients with and without ABG, by selecting the most predictive variables and by reducing input data to the minimum.METHODS: Data was collected from 350 consecutive outpatients (263 with ABG, 87 with non-atrophic gastritis and/or celiac disease [controls]). Structured questionnaires with 22 items (anagraphic, anamnestic, clinical, and biochemical data) were filled out for each patient. All patients underwent gastroscopy with biopsies. ANNs and LDA were applied to recognize patients with ABG.Experiment 1: random selection on 37 variables, experiment 2: optimization process on 30 variables, experiment 3:input data reduction on 8 variables, experiment 4: use of only clinical input data on 5 variables, and experiment 5:use of only serological variables.RESULTS: In experiment 1, overall accuracies of ANNs and LDA were 96.6% and 94.6%, respectively, for predicting patients with ABG. In experiment 2, ANNs and LDA reached an overall accuracy of 98.8% and 96.8%,respectively. In experiment 3, overall accuracy of ANNs was 98.4%. In experiment 4, overall accuracies of ANNs and LDA were, respectively, 91.3% and 88.6%. In experiment 5, overall accuracies of ANNs and LDA were,respectively, 97.7% and 94.5%.CONCLUSION: This preliminary study suggests that advanced statistical methods, not only ANNs, but also LDA,may contribute to better address bioptic sampling during gastroscopy in a subset of patients in whom ABG may be suspected on the basis of aspecific gastrointestinal symptoms or non-digestive disorders. 展开更多
关键词 Atrophic body gastritis Computer-based decision support GASTROSCOPY Artificial neural networks
下载PDF
Neural Networks for Logic Circuits 被引量:2
18
作者 Liu Yongcai (School of Computer Engineering and Science) 《Advances in Manufacturing》 SCIE CAS 1998年第2期60-63,共4页
Bushnell and the author proposed the neural networks for NOT, AND, OR, NAND, NOR, XOR and XNOR gates. Using these neural networks, the neural networks of any logic circuits can be constructd. From this, the consistent... Bushnell and the author proposed the neural networks for NOT, AND, OR, NAND, NOR, XOR and XNOR gates. Using these neural networks, the neural networks of any logic circuits can be constructd. From this, the consistent signals in the logic circuits will be transformed into the global minimal points of a quadratic pseudo Boolean function. Thus the neural network application in the field of circuit modeling and automatic test pattern generation can be widened. 展开更多
关键词 neural network Hopfield network quadratic pseudo Boolean function k tree
下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
19
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(CNN) cloud RAN deep Q-network(DQN)
下载PDF
Wireless Sensor Networks Routing Attacks Prevention with Blockchain and Deep Neural Network 被引量:1
20
作者 Mohamed Ali Ibrahim A.Abd El-Moghith +1 位作者 Mohamed N.El-Derini Saad M.Darwish 《Computers, Materials & Continua》 SCIE EI 2022年第3期6127-6140,共14页
Routing is a key function inWireless Sensor Networks(WSNs)since it facilitates data transfer to base stations.Routing attacks have the potential to destroy and degrade the functionality ofWSNs.A trustworthy routing sy... Routing is a key function inWireless Sensor Networks(WSNs)since it facilitates data transfer to base stations.Routing attacks have the potential to destroy and degrade the functionality ofWSNs.A trustworthy routing system is essential for routing security andWSN efficiency.Numerous methods have been implemented to build trust between routing nodes,including the use of cryptographic methods and centralized routing.Nonetheless,the majority of routing techniques are unworkable in reality due to the difficulty of properly identifying untrusted routing node activities.At the moment,there is no effective way to avoid malicious node attacks.As a consequence of these concerns,this paper proposes a trusted routing technique that combines blockchain infrastructure,deep neural networks,and Markov Decision Processes(MDPs)to improve the security and efficiency of WSN routing.To authenticate the transmission process,the suggested methodology makes use of a Proof of Authority(PoA)mechanism inside the blockchain network.The validation group required for proofing is chosen using a deep learning approach that prioritizes each node’s characteristics.MDPs are then utilized to determine the suitable next-hop as a forwarding node capable of securely transmitting messages.According to testing data,our routing system outperforms current routing algorithms in a 50%malicious node routing scenario. 展开更多
关键词 Wireless sensor networks trusted routing deep neural network blockchain markov decision
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部