Shared control schemes allow a human driver to work with an automated driving agent in driver-vehicle systems while retaining the driver’s abilities to control.The human driver,as an essential agent in the driver-veh...Shared control schemes allow a human driver to work with an automated driving agent in driver-vehicle systems while retaining the driver’s abilities to control.The human driver,as an essential agent in the driver-vehicle shared control systems,should be precisely modeled regarding their cognitive processes,control strategies,and decision-making processes.The interactive strategy design between drivers and automated driving agents brings an excellent challenge for human-centric driver assistance systems due to the inherent characteristics of humans.Many open-ended questions arise,such as what proper role of human drivers should act in a shared control scheme?How to make an intelligent decision capable of balancing the benefits of agents in shared control systems?Due to the advent of these attentions and questions,it is desirable to present a survey on the decision making between human drivers and highly automated vehicles,to understand their architectures,human driver modeling,and interaction strategies under the driver-vehicle shared schemes.Finally,we give a further discussion on the key future challenges and opportunities.They are likely to shape new potential research directions.展开更多
Previous discussion about the factors of the expanding trend of abandoned cultivation had focused only on universal factors and lacked evaluation of the regionality of the phenomenon. This paper demonstrated the Toraj...Previous discussion about the factors of the expanding trend of abandoned cultivation had focused only on universal factors and lacked evaluation of the regionality of the phenomenon. This paper demonstrated the Toraja’s regional characteristics and the influence of cultural endemism on decision-making about abandoning cultivation by an observation-oriented approach. Based on a causal framework constructed by field observation and geospatial data generation, an adjustment for overt covariates using the multivariate logistic regression model to draw the causal effect from hidden covariates was examined in two rice terraces with different water systems, i.e. irrigated field and rain-fed field. The result of sub-group analysis revealed that decisions about abandoning cultivation in Toraja were greatly associated with disadvantageous factors for intensive farming, i.e. “number of adjacent fields” and “soil erosion” rather than advantageous factors, i.e. “area of field” and “distance to roads”. Moreover, the result of interaction analysis which controlled the effect of topography revealed the powerful effect of particular decision factors only in rain-fed rice terrace: the “distance to roads” factor’s fairly negative contribution on abandoning cultivation (Odds ratio = 9.94E - 01, P value = 2.03E - 11), as well as the “number of adjacent field” factor’s positive contribution on abandoning cultivation (Odds ratio = 1.13E+00, P value = 3.65E - 04). Given the evidence from the explanation of these results by customary laws and land inheritance system for each site, therefore, it could be concluded that the screening and detection of cultural endemism’s influence was achieved using the algorithm this paper proposes.展开更多
目的研究以互动达标理论为指导的延续性护理结合知信行干预对妊娠期糖尿病(GDM)患者血糖控制及健康行为的影响。方法择取2020年3月至2022年3月收治的80例GDM患者为研究对象,随机将其分为对照组和观察组,每组40例。对照组采用常规护理干...目的研究以互动达标理论为指导的延续性护理结合知信行干预对妊娠期糖尿病(GDM)患者血糖控制及健康行为的影响。方法择取2020年3月至2022年3月收治的80例GDM患者为研究对象,随机将其分为对照组和观察组,每组40例。对照组采用常规护理干预,观察组在对照组基础上加施以互动达标理论为指导的延续性护理结合知信行干预。比较两组的干预效果。结果干预后,观察组的空腹血糖(FBG)、餐后2 h血糖(2 h PBG)水平及糖化血红蛋白(HbA1c)低于对照组(P<0.05);观察组的血糖控制达标率高于对照组(P<0.05)。干预后,观察组的健康促进生活方式量表-Ⅱ(HPLP-Ⅱ)各维度评分高于对照组(P<0.05)。干预后,观察组的自我护理能力测定量表(ESCA)各维度评分高于对照组(P<0.05)。结论以互动达标理论为指导的延续性护理结合知信行干预不仅能够有效改善GDM患者血糖控制及健康行为,还能提高其自护能力。展开更多
With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between busine...With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between businesses and their customers. This critical literature review paper explores the impact of live streaming on businesses, focusing on its role in attracting and satisfying consumers by promoting products tailored to their needs and wants. It emphasizes live streaming’s crucial role in engaging customers, a key to business growth. The study also provides viable strategies for businesses to leverage live streaming for growth and customer engagement, underscoring its importance in the business landscape.展开更多
Decision-making plays an essential role in various real-world systems like automatic driving,traffic dispatching,information system management,and emergency command and control.Recent breakthroughs in computer game sc...Decision-making plays an essential role in various real-world systems like automatic driving,traffic dispatching,information system management,and emergency command and control.Recent breakthroughs in computer game scenarios using deep reinforcement learning for intelligent decision-making have paved decision-making intelligence as a burgeoning research direction.In complex practical systems,however,factors like coupled distracting features,long-term interact links,and adversarial environments and opponents,make decision-making in practical applications challenging in modeling,computing,and explaining.This work proposes game interactive learning,a novel paradigm as a new approach towards intelligent decision-making in complex and adversarial environments.This novel paradigm highlights the function and role of a human in the process of intelligent decision-making in complex systems.It formalizes a new learning paradigm for exchanging information and knowledge between humans and the machine system.The proposed paradigm first inherits methods in game theory to model the agents and their preferences in the complex decision-making process.It then optimizes the learning objectives from equilibrium analysis using reformed machine learning algorithms to compute and pursue promising decision results for practice.Human interactions are involved when the learning process needs guidance from additional knowledge and instructions,or the human wants to understand the learning machine better.We perform preliminary experimental verification of the proposed paradigm on two challenging decision-making tasks in tactical-level War-game scenarios.Experimental results demonstrate the effectiveness of the proposed learning paradigm.展开更多
In response to many multi-attribute decision-making(MADM)problems involved in chemical processes such as controller tuning,which suffer human's subjective preferential nature in human–computer interactions,a nove...In response to many multi-attribute decision-making(MADM)problems involved in chemical processes such as controller tuning,which suffer human's subjective preferential nature in human–computer interactions,a novel affective computing and preferential evolutionary solution is proposed to adapt human–computer interaction mechanism.Based on the stimulating response mechanism,an improved affective computing model is introduced to quantify decision maker's preference in selections of interactive evolutionary computing.In addition,the mathematical relationship between affective space and decision maker's preferences is constructed.Subsequently,a human–computer interactive preferential evolutionary algorithm for MADM problems is proposed,which deals with attribute weights and optimal solutions based on preferential evolution metrics.To exemplify applications of the proposed methods,some test functions and,emphatically,controller tuning issues associated with a chemical process are investigated,giving satisfactory results.展开更多
Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase ...Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase of information in every field and the need for a centralized location for processing efficiently.This cloud is nowadays highly affected by internal threats of the user.Sensitive applications such as banking,hospital,and business are more likely affected by real user threats.An intruder is presented as a user and set as a member of the network.After becoming an insider in the network,they will try to attack or steal sensitive data during information sharing or conversation.The major issue in today's technological development is identifying the insider threat in the cloud network.When data are lost,compromising cloud users is difficult.Privacy and security are not ensured,and then,the usage of the cloud is not trusted.Several solutions are available for the external security of the cloud network.However,insider or internal threats need to be addressed.In this research work,we focus on a solution for identifying an insider attack using the artificial intelligence technique.An insider attack is possible by using nodes of weak users’systems.They will log in using a weak user id,connect to a network,and pretend to be a trusted node.Then,they can easily attack and hack information as an insider,and identifying them is very difficult.These types of attacks need intelligent solutions.A machine learning approach is widely used for security issues.To date,the existing lags can classify the attackers accurately.This information hijacking process is very absurd,which motivates young researchers to provide a solution for internal threats.In our proposed work,we track the attackers using a user interaction behavior pattern and deep learning technique.The usage of mouse movements and clicks and keystrokes of the real user is stored in a database.The deep belief neural network is designed using a restricted Boltzmann machine(RBM)so that the layer of RBM communicates with the previous and subsequent layers.The result is evaluated using a Cooja simulator based on the cloud environment.The accuracy and F-measure are highly improved compared with when using the existing long short-term memory and support vector machine.展开更多
D-S evidence theory,as a general framework for reasoning with uncertainty,allows combining pieces of evidence from different information sources to derive a degree of belief function that is a type of fuzzy measure.Ho...D-S evidence theory,as a general framework for reasoning with uncertainty,allows combining pieces of evidence from different information sources to derive a degree of belief function that is a type of fuzzy measure.However,the mass assignments given by unknown information sources are disordered.How to measure the difference between the mass assignments has aroused people’s interest.In this paper,inspired by the information volume,a novel distance-based measure is proposed to measure the difference between mass assignments.The method can refine the uncertain information given by experts and compare the refined information to obtain the difference between mass assignments.At the same time,it is verified that the measure not only meets the properties of distance,but also proves the superiority of the proposed Information Volume Distance(IVD)through simulation experiments.Meanwhile,in the process of information fusion,the reliability of each source could be quantified through IVD.Therefore,based on IVD,a new multi-source information algorithm is proposed to solve the problem of multi-source information fusion.Moreover,algorithm is applied to decision-making problem and compare with other methods to verify the effectiveness.展开更多
文摘Shared control schemes allow a human driver to work with an automated driving agent in driver-vehicle systems while retaining the driver’s abilities to control.The human driver,as an essential agent in the driver-vehicle shared control systems,should be precisely modeled regarding their cognitive processes,control strategies,and decision-making processes.The interactive strategy design between drivers and automated driving agents brings an excellent challenge for human-centric driver assistance systems due to the inherent characteristics of humans.Many open-ended questions arise,such as what proper role of human drivers should act in a shared control scheme?How to make an intelligent decision capable of balancing the benefits of agents in shared control systems?Due to the advent of these attentions and questions,it is desirable to present a survey on the decision making between human drivers and highly automated vehicles,to understand their architectures,human driver modeling,and interaction strategies under the driver-vehicle shared schemes.Finally,we give a further discussion on the key future challenges and opportunities.They are likely to shape new potential research directions.
文摘Previous discussion about the factors of the expanding trend of abandoned cultivation had focused only on universal factors and lacked evaluation of the regionality of the phenomenon. This paper demonstrated the Toraja’s regional characteristics and the influence of cultural endemism on decision-making about abandoning cultivation by an observation-oriented approach. Based on a causal framework constructed by field observation and geospatial data generation, an adjustment for overt covariates using the multivariate logistic regression model to draw the causal effect from hidden covariates was examined in two rice terraces with different water systems, i.e. irrigated field and rain-fed field. The result of sub-group analysis revealed that decisions about abandoning cultivation in Toraja were greatly associated with disadvantageous factors for intensive farming, i.e. “number of adjacent fields” and “soil erosion” rather than advantageous factors, i.e. “area of field” and “distance to roads”. Moreover, the result of interaction analysis which controlled the effect of topography revealed the powerful effect of particular decision factors only in rain-fed rice terrace: the “distance to roads” factor’s fairly negative contribution on abandoning cultivation (Odds ratio = 9.94E - 01, P value = 2.03E - 11), as well as the “number of adjacent field” factor’s positive contribution on abandoning cultivation (Odds ratio = 1.13E+00, P value = 3.65E - 04). Given the evidence from the explanation of these results by customary laws and land inheritance system for each site, therefore, it could be concluded that the screening and detection of cultural endemism’s influence was achieved using the algorithm this paper proposes.
文摘目的研究以互动达标理论为指导的延续性护理结合知信行干预对妊娠期糖尿病(GDM)患者血糖控制及健康行为的影响。方法择取2020年3月至2022年3月收治的80例GDM患者为研究对象,随机将其分为对照组和观察组,每组40例。对照组采用常规护理干预,观察组在对照组基础上加施以互动达标理论为指导的延续性护理结合知信行干预。比较两组的干预效果。结果干预后,观察组的空腹血糖(FBG)、餐后2 h血糖(2 h PBG)水平及糖化血红蛋白(HbA1c)低于对照组(P<0.05);观察组的血糖控制达标率高于对照组(P<0.05)。干预后,观察组的健康促进生活方式量表-Ⅱ(HPLP-Ⅱ)各维度评分高于对照组(P<0.05)。干预后,观察组的自我护理能力测定量表(ESCA)各维度评分高于对照组(P<0.05)。结论以互动达标理论为指导的延续性护理结合知信行干预不仅能够有效改善GDM患者血糖控制及健康行为,还能提高其自护能力。
文摘With the rise of live streaming on social media, platforms like Facebook, Instagram, and YouTube have become powerful business tools. They enable users to share live videos, fostering direct connections between businesses and their customers. This critical literature review paper explores the impact of live streaming on businesses, focusing on its role in attracting and satisfying consumers by promoting products tailored to their needs and wants. It emphasizes live streaming’s crucial role in engaging customers, a key to business growth. The study also provides viable strategies for businesses to leverage live streaming for growth and customer engagement, underscoring its importance in the business landscape.
文摘Decision-making plays an essential role in various real-world systems like automatic driving,traffic dispatching,information system management,and emergency command and control.Recent breakthroughs in computer game scenarios using deep reinforcement learning for intelligent decision-making have paved decision-making intelligence as a burgeoning research direction.In complex practical systems,however,factors like coupled distracting features,long-term interact links,and adversarial environments and opponents,make decision-making in practical applications challenging in modeling,computing,and explaining.This work proposes game interactive learning,a novel paradigm as a new approach towards intelligent decision-making in complex and adversarial environments.This novel paradigm highlights the function and role of a human in the process of intelligent decision-making in complex systems.It formalizes a new learning paradigm for exchanging information and knowledge between humans and the machine system.The proposed paradigm first inherits methods in game theory to model the agents and their preferences in the complex decision-making process.It then optimizes the learning objectives from equilibrium analysis using reformed machine learning algorithms to compute and pursue promising decision results for practice.Human interactions are involved when the learning process needs guidance from additional knowledge and instructions,or the human wants to understand the learning machine better.We perform preliminary experimental verification of the proposed paradigm on two challenging decision-making tasks in tactical-level War-game scenarios.Experimental results demonstrate the effectiveness of the proposed learning paradigm.
基金Supported by the Fundamental Research Funds for the Central Universities(ZY1347and YS1404)
文摘In response to many multi-attribute decision-making(MADM)problems involved in chemical processes such as controller tuning,which suffer human's subjective preferential nature in human–computer interactions,a novel affective computing and preferential evolutionary solution is proposed to adapt human–computer interaction mechanism.Based on the stimulating response mechanism,an improved affective computing model is introduced to quantify decision maker's preference in selections of interactive evolutionary computing.In addition,the mathematical relationship between affective space and decision maker's preferences is constructed.Subsequently,a human–computer interactive preferential evolutionary algorithm for MADM problems is proposed,which deals with attribute weights and optimal solutions based on preferential evolution metrics.To exemplify applications of the proposed methods,some test functions and,emphatically,controller tuning issues associated with a chemical process are investigated,giving satisfactory results.
文摘Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase of information in every field and the need for a centralized location for processing efficiently.This cloud is nowadays highly affected by internal threats of the user.Sensitive applications such as banking,hospital,and business are more likely affected by real user threats.An intruder is presented as a user and set as a member of the network.After becoming an insider in the network,they will try to attack or steal sensitive data during information sharing or conversation.The major issue in today's technological development is identifying the insider threat in the cloud network.When data are lost,compromising cloud users is difficult.Privacy and security are not ensured,and then,the usage of the cloud is not trusted.Several solutions are available for the external security of the cloud network.However,insider or internal threats need to be addressed.In this research work,we focus on a solution for identifying an insider attack using the artificial intelligence technique.An insider attack is possible by using nodes of weak users’systems.They will log in using a weak user id,connect to a network,and pretend to be a trusted node.Then,they can easily attack and hack information as an insider,and identifying them is very difficult.These types of attacks need intelligent solutions.A machine learning approach is widely used for security issues.To date,the existing lags can classify the attackers accurately.This information hijacking process is very absurd,which motivates young researchers to provide a solution for internal threats.In our proposed work,we track the attackers using a user interaction behavior pattern and deep learning technique.The usage of mouse movements and clicks and keystrokes of the real user is stored in a database.The deep belief neural network is designed using a restricted Boltzmann machine(RBM)so that the layer of RBM communicates with the previous and subsequent layers.The result is evaluated using a Cooja simulator based on the cloud environment.The accuracy and F-measure are highly improved compared with when using the existing long short-term memory and support vector machine.
基金supported by the National Natural Science Foundation of China(No.62003280)Chongqing Talents:Exceptional Young Talents Project(No.cstc2022ycjhbgzxm0070)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0531)Chongqing Overseas Scholars Innovation Program(No.cx2022024).
文摘D-S evidence theory,as a general framework for reasoning with uncertainty,allows combining pieces of evidence from different information sources to derive a degree of belief function that is a type of fuzzy measure.However,the mass assignments given by unknown information sources are disordered.How to measure the difference between the mass assignments has aroused people’s interest.In this paper,inspired by the information volume,a novel distance-based measure is proposed to measure the difference between mass assignments.The method can refine the uncertain information given by experts and compare the refined information to obtain the difference between mass assignments.At the same time,it is verified that the measure not only meets the properties of distance,but also proves the superiority of the proposed Information Volume Distance(IVD)through simulation experiments.Meanwhile,in the process of information fusion,the reliability of each source could be quantified through IVD.Therefore,based on IVD,a new multi-source information algorithm is proposed to solve the problem of multi-source information fusion.Moreover,algorithm is applied to decision-making problem and compare with other methods to verify the effectiveness.