The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the p...The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in ...BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults.To develop a focused screening plan and treatment for Chinese adults with prediabetes,it is crucial to identify variations in the connection between prediabetes and the risk of CVD based on age.AIM To examine the clinical features of prediabetes and identify risk factors for CVD in different age groups in China.METHODS The cross-sectional study involved a total of 46239 participants from June 2007 through May 2008.A thorough evaluation was conducted.Individuals with prediabetes were categorized into two groups based on age.Chinese atherosclerotic CVD risk prediction model was employed to evaluate the risk of developing CVD over 10 years.Random forest was established in both age groups.SHapley Additive exPlanation method prioritized the importance of features from the perspective of assessment contribution.RESULTS In total,6948 people were diagnosed with prediabetes in this study.In prediabetes,prevalences of CVD were 5(0.29%)in the younger group and 148(2.85%)in the older group.Overall,11.11%of the younger group and 29.59% of the older group were intermediate/high-risk of CVD for prediabetes without CVD based on the Prediction for ASCVD Risk in China equation in ten years.In the younger age group,the 10-year risk of CVD was found to be more closely linked to family history of CVD rather than lifestyle,whereas in the older age group,resident status was more closely linked.CONCLUSION The susceptibility to CVD is age-specific in newly diagnosed prediabetes.It is necessary to develop targeted approaches for the prevention and management of CVD in adults across various age brackets.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when t...Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when two or more singular values obtained from the cross-spectral density matrix diagonalization are nearly equal,this results in unsatisfactory extraction outcomes for the normal mode depth functions.To address this issue,we introduced in this paper a range-difference singular value decomposition method for the extraction of normal mode depth functions.We performed the mode extraction by conducting singular value decomposition on the individual frequency components of the signal's cross-spectral density matrix.This was achieved by using pressure and its range-difference matrices constructed from vertical line array data.The proposed method was validated using simulated data.In addition,modes were successfully extracted from ambient noise.展开更多
Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to bal...An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design.展开更多
Policy evaluation(PE)is a critical sub-problem in reinforcement learning,which estimates the value function for a given policy and can be used for policy improvement.However,there still exist some limitations in curre...Policy evaluation(PE)is a critical sub-problem in reinforcement learning,which estimates the value function for a given policy and can be used for policy improvement.However,there still exist some limitations in current PE methods,such as low sample efficiency and local convergence,especially on complex tasks.In this study,a novel PE algorithm called Least-Squares Truncated Temporal-Difference learning(LST2D)is proposed.In LST2D,an adaptive truncation mechanism is designed,which effectively takes advantage of the fast convergence property of Least-Squares Temporal Difference learning and the asymptotic convergence property of Temporal Difference learning(TD).Then,two feature pre-training methods are utilised to improve the approximation ability of LST2D.Furthermore,an Actor-Critic algorithm based on LST2D and pre-trained feature representations(ACLPF)is proposed,where LST2D is integrated into the critic network to improve learning-prediction efficiency.Comprehensive simulation studies were conducted on four robotic tasks,and the corresponding results illustrate the effectiveness of LST2D.The proposed ACLPF algorithm outperformed DQN,ACER and PPO in terms of sample efficiency and stability,which demonstrated that LST2D can be applied to online learning control problems by incorporating it into the actor-critic architecture.展开更多
BACKGROUND Laparoscopic rectal cancer radical surgery is a complex procedure affected by various factors.However,the existing literature lacks standardized parameters for the pelvic region and soft tissues,which hampe...BACKGROUND Laparoscopic rectal cancer radical surgery is a complex procedure affected by various factors.However,the existing literature lacks standardized parameters for the pelvic region and soft tissues,which hampers the establishment of consistent conclusions.AIM To comprehensively assess 16 pelvic and 7 soft tissue parameters through computerized tomography(CT)-based three-dimensional(3D)reconstruction,providing a strong theoretical basis to address challenges in laparoscopic rectal cancer radical surgery.METHODS We analyzed data from 218 patients who underwent radical laparoscopic surgery for rectal cancer,and utilized CT data for 3D pelvic reconstruction.Specific anatomical points were carefully marked and measured using advanced 3D modeling software.To analyze the pelvic and soft tissue parameters,we emp-loyed statistical methods including paired sample t-tests,Wilcoxon rank-sum tests,and correlation analysis.RESULTS The investigation highlighted significant sex disparities in 14 pelvic bone parameters and 3 soft tissue parameters.Males demonstrated larger measurements in pelvic depth and overall curvature,smaller measurements in pelvic width,a larger mesorectal fat area,and a larger anterior-posterior abdominal diameter.By contrast,females exhibited wider pelvises,shallower depth,smaller overall curvature,and an increased amount of subcutaneous fat tissue.However,there were no significant sex differences observed in certain parameters such as sacral curvature height,superior pubococcygeal diameter,rectal area,visceral fat area,waist circumference,and transverse abdominal diameter.CONCLUSION The reconstruction of 3D CT data enabled accurate pelvic measurements,revealing significant sex differences in both pelvic and soft tissue parameters.This study design offer potential in predicting surgical difficulties and creating personalized surgical plans for male rectal cancer patients with a potentially“difficult pelvis”,ultimately improving surgical outcomes.Further research and utilization of these parameters could lead to enhanced surgical methods and patient care in laparoscopic rectal cancer radical surgery.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs.There are inevitable differences in efficacy,side effects and long-term treatment response between m...Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs.There are inevitable differences in efficacy,side effects and long-term treatment response between men and women.Psychopharmacological research needs to develop adequately powered animal and human trials aimed to consider pharmacokinetics and pharmacodynamics of central nervous system drugs in both male and female subjects.Healthcare professionals have the responsibility to prescribe sex-specific psychopharmacotherapies with a priority to differentiate between men and women in order to minimize adverse drugs reactions,to maximize therapeutic effectiveness and to provide personalized management of care.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
AIM:To evaluate the refraction difference value(RDV)variations in children and adolescents with different refractive errors and analyze its correlation with refractive development.METHODS:Participants aged 4-16y with ...AIM:To evaluate the refraction difference value(RDV)variations in children and adolescents with different refractive errors and analyze its correlation with refractive development.METHODS:Participants aged 4-16y with different refractive statuses(hyperopia,emmetropia,myopia)underwent comprehensive eye examinations,including spherical equivalent(SE)refraction,axial length(AL),total RDV(TRDV),and RDVs at various eccentricities(0°-15°,15°-30°,30°-45°)and quadrants(inferior,superior,nasal,temporal).Statistical analysis involved one-way ANOVA for group comparisons and Pearson correlation for examining relationships between SE/AL and RDVs.Paired t-tests compared quadrant-specific RDVs within groups.RESULTS:Significant difference was found in TRDV(P<0.001),RDV15°-30°(P=0.033),RDV30°-45°(P<0.001),RDV-inferior(RDV-I,P<0.001)and RDV-temporal(RDV-T,P<0.001)among hyperopia,emmetropia and myopia group.Pearson correlation analysis revealed a negative correlation of SE with TRDV(P=0.001),RDV30°-45°(P=0.004),RDV-I(P=0.047),and RDV-T(P<0.001).The differences between RDV-superior(RDV-S)and RDV-I were statistically significant in all groups(P<0.001 for all)and between RDV-T and RDV-nasal(RDV-N)were statistically significant in hyperopia group(P<0.001).Within the premyopic group,the analysis revealed a negative correlation of SE with RDV-I(P=0.009).Pearson correlation analysis revealed a positive correlation of AL with TRDV(P=0.036),RDV15°-30°(P=0.004),RDV30°-45°(P<0.001),RDV-S(P=0.003),RDV-I(P<0.001),RDV-T(P<0.001),RDV-N(P=0.022),while revealed a negative correlation of AL with RDV0-15°(P=0.018).CONCLUSION:Our study indicates TRDV,RDV30°-45°,RDV-I,RDV-T may relate to refractive development,and a negative correlation between SE and RDV-I in pre-myopic children.展开更多
文摘The minimal clinically important difference(MCID)represents a pivotal metric in bridging the gap between statistical significance and clinical relevance,addressing the direct impact of medical interventions from the patient's perspective.This comprehensive review analyzes the evolution,applications,and challenges of MCID across medical specialties,emphasizing its necessity in ensuring that clinical outcomes not only demonstrate statistical significance but also offer genuine clinical utility that aligns with patient expectations and needs.We discuss the evolution of MCID since its inception in the 1980s,its current applications across various medical specialties,and the methodologies used in its calculation,highlighting both anchor-based and distribution-based approaches.Furthermore,the paper delves into the challenges associated with the application of MCID,such as methodological variability and the interpretation difficulties that arise in clinical settings.Recommendations for the future include standardizing MCID calculation methods,enhancing patient involvement in setting MCID thresholds,and extending research to incorporate diverse global perspectives.These steps are critical to refining the role of MCID in patient-centered healthcare,addressing existing gaps in methodology and interpretation,and ensuring that medical interventions lead to significant,patient-perceived improvements.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
文摘BACKGROUND Cardiovascular disease(CVD)is a leading cause of morbidity and mortality worldwide,the global burden of which is rising.It is still unclear the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults.To develop a focused screening plan and treatment for Chinese adults with prediabetes,it is crucial to identify variations in the connection between prediabetes and the risk of CVD based on age.AIM To examine the clinical features of prediabetes and identify risk factors for CVD in different age groups in China.METHODS The cross-sectional study involved a total of 46239 participants from June 2007 through May 2008.A thorough evaluation was conducted.Individuals with prediabetes were categorized into two groups based on age.Chinese atherosclerotic CVD risk prediction model was employed to evaluate the risk of developing CVD over 10 years.Random forest was established in both age groups.SHapley Additive exPlanation method prioritized the importance of features from the perspective of assessment contribution.RESULTS In total,6948 people were diagnosed with prediabetes in this study.In prediabetes,prevalences of CVD were 5(0.29%)in the younger group and 148(2.85%)in the older group.Overall,11.11%of the younger group and 29.59% of the older group were intermediate/high-risk of CVD for prediabetes without CVD based on the Prediction for ASCVD Risk in China equation in ten years.In the younger age group,the 10-year risk of CVD was found to be more closely linked to family history of CVD rather than lifestyle,whereas in the older age group,resident status was more closely linked.CONCLUSION The susceptibility to CVD is age-specific in newly diagnosed prediabetes.It is necessary to develop targeted approaches for the prevention and management of CVD in adults across various age brackets.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金supported in part by the Young Scientists Fund of National Natural Science Foundation of China (No.42206226)the National Key Research and Development Program of China (No.2021YFC3101603)。
文摘Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when two or more singular values obtained from the cross-spectral density matrix diagonalization are nearly equal,this results in unsatisfactory extraction outcomes for the normal mode depth functions.To address this issue,we introduced in this paper a range-difference singular value decomposition method for the extraction of normal mode depth functions.We performed the mode extraction by conducting singular value decomposition on the individual frequency components of the signal's cross-spectral density matrix.This was achieved by using pressure and its range-difference matrices constructed from vertical line array data.The proposed method was validated using simulated data.In addition,modes were successfully extracted from ambient noise.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
基金the National Natural Science Foundation of China(No.52175103)。
文摘An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design.
基金Joint Funds of the National Natural Science Foundation of China,Grant/Award Number:U21A20518National Natural Science Foundation of China,Grant/Award Numbers:62106279,61903372。
文摘Policy evaluation(PE)is a critical sub-problem in reinforcement learning,which estimates the value function for a given policy and can be used for policy improvement.However,there still exist some limitations in current PE methods,such as low sample efficiency and local convergence,especially on complex tasks.In this study,a novel PE algorithm called Least-Squares Truncated Temporal-Difference learning(LST2D)is proposed.In LST2D,an adaptive truncation mechanism is designed,which effectively takes advantage of the fast convergence property of Least-Squares Temporal Difference learning and the asymptotic convergence property of Temporal Difference learning(TD).Then,two feature pre-training methods are utilised to improve the approximation ability of LST2D.Furthermore,an Actor-Critic algorithm based on LST2D and pre-trained feature representations(ACLPF)is proposed,where LST2D is integrated into the critic network to improve learning-prediction efficiency.Comprehensive simulation studies were conducted on four robotic tasks,and the corresponding results illustrate the effectiveness of LST2D.The proposed ACLPF algorithm outperformed DQN,ACER and PPO in terms of sample efficiency and stability,which demonstrated that LST2D can be applied to online learning control problems by incorporating it into the actor-critic architecture.
基金2021 Zhejiang Province Public Welfare Technology Application Research Funding Project,No.LGC21H160002Basic Scientific Research Projects in Wenzhou City in 2022,No.Y20220885Wenzhou Medical University 2021 Higher Education Teaching Reform Project,No.JG2021167.
文摘BACKGROUND Laparoscopic rectal cancer radical surgery is a complex procedure affected by various factors.However,the existing literature lacks standardized parameters for the pelvic region and soft tissues,which hampers the establishment of consistent conclusions.AIM To comprehensively assess 16 pelvic and 7 soft tissue parameters through computerized tomography(CT)-based three-dimensional(3D)reconstruction,providing a strong theoretical basis to address challenges in laparoscopic rectal cancer radical surgery.METHODS We analyzed data from 218 patients who underwent radical laparoscopic surgery for rectal cancer,and utilized CT data for 3D pelvic reconstruction.Specific anatomical points were carefully marked and measured using advanced 3D modeling software.To analyze the pelvic and soft tissue parameters,we emp-loyed statistical methods including paired sample t-tests,Wilcoxon rank-sum tests,and correlation analysis.RESULTS The investigation highlighted significant sex disparities in 14 pelvic bone parameters and 3 soft tissue parameters.Males demonstrated larger measurements in pelvic depth and overall curvature,smaller measurements in pelvic width,a larger mesorectal fat area,and a larger anterior-posterior abdominal diameter.By contrast,females exhibited wider pelvises,shallower depth,smaller overall curvature,and an increased amount of subcutaneous fat tissue.However,there were no significant sex differences observed in certain parameters such as sacral curvature height,superior pubococcygeal diameter,rectal area,visceral fat area,waist circumference,and transverse abdominal diameter.CONCLUSION The reconstruction of 3D CT data enabled accurate pelvic measurements,revealing significant sex differences in both pelvic and soft tissue parameters.This study design offer potential in predicting surgical difficulties and creating personalized surgical plans for male rectal cancer patients with a potentially“difficult pelvis”,ultimately improving surgical outcomes.Further research and utilization of these parameters could lead to enhanced surgical methods and patient care in laparoscopic rectal cancer radical surgery.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
文摘Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs.There are inevitable differences in efficacy,side effects and long-term treatment response between men and women.Psychopharmacological research needs to develop adequately powered animal and human trials aimed to consider pharmacokinetics and pharmacodynamics of central nervous system drugs in both male and female subjects.Healthcare professionals have the responsibility to prescribe sex-specific psychopharmacotherapies with a priority to differentiate between men and women in order to minimize adverse drugs reactions,to maximize therapeutic effectiveness and to provide personalized management of care.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
文摘AIM:To evaluate the refraction difference value(RDV)variations in children and adolescents with different refractive errors and analyze its correlation with refractive development.METHODS:Participants aged 4-16y with different refractive statuses(hyperopia,emmetropia,myopia)underwent comprehensive eye examinations,including spherical equivalent(SE)refraction,axial length(AL),total RDV(TRDV),and RDVs at various eccentricities(0°-15°,15°-30°,30°-45°)and quadrants(inferior,superior,nasal,temporal).Statistical analysis involved one-way ANOVA for group comparisons and Pearson correlation for examining relationships between SE/AL and RDVs.Paired t-tests compared quadrant-specific RDVs within groups.RESULTS:Significant difference was found in TRDV(P<0.001),RDV15°-30°(P=0.033),RDV30°-45°(P<0.001),RDV-inferior(RDV-I,P<0.001)and RDV-temporal(RDV-T,P<0.001)among hyperopia,emmetropia and myopia group.Pearson correlation analysis revealed a negative correlation of SE with TRDV(P=0.001),RDV30°-45°(P=0.004),RDV-I(P=0.047),and RDV-T(P<0.001).The differences between RDV-superior(RDV-S)and RDV-I were statistically significant in all groups(P<0.001 for all)and between RDV-T and RDV-nasal(RDV-N)were statistically significant in hyperopia group(P<0.001).Within the premyopic group,the analysis revealed a negative correlation of SE with RDV-I(P=0.009).Pearson correlation analysis revealed a positive correlation of AL with TRDV(P=0.036),RDV15°-30°(P=0.004),RDV30°-45°(P<0.001),RDV-S(P=0.003),RDV-I(P<0.001),RDV-T(P<0.001),RDV-N(P=0.022),while revealed a negative correlation of AL with RDV0-15°(P=0.018).CONCLUSION:Our study indicates TRDV,RDV30°-45°,RDV-I,RDV-T may relate to refractive development,and a negative correlation between SE and RDV-I in pre-myopic children.