Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules...The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
[Objectives]This study was conducted to analyze the medication rules of clinical prescriptions of traditional Chinese medicine decoction pieces for the treatment of novel coronavirus pneumonia(COVID-19)during the epid...[Objectives]This study was conducted to analyze the medication rules of clinical prescriptions of traditional Chinese medicine decoction pieces for the treatment of novel coronavirus pneumonia(COVID-19)during the epidemic in multiple regions based on data mining technology,so as to provide a reference for the treatment of COVID-19 with traditional Chinese medicine.[Methods]The traditional Chinese medicine prescriptions used since the outbreak of COVID-19 in Hubei Province during the fight against the epidemic from February 25,2020 to February 14,2022,the traditional Chinese medicine prescriptions used by Guizhou traditional Chinese medicine expert team aiding Hubei Province,the traditional Chinese medicine prescriptions for rehabilitation and conditioning of patients in Ezhou of Hubei Province after discharge,the traditional Chinese medicine prescriptions for the prevention and treatment of COVID-19 in Guizhou Province,and the traditional Chinese medicine prescriptions for the treatment of COVID-19 collected from the end of 2019 to the present from the Chinese database of CNKI were collected as the data of this study.Excel was used to establish a database and enter it into the TCM inheritance calculation platform V3.5,and the association rules and k-means clustering algorithm were used to analyze the frequency of herbal medicines in prescriptions during the treatment of COVID-19,the frequency of four natures,five flavors,meridian distribution,and drug combinations.[Results]A total of 1859 COVID-19 patients treated with traditional Chinese medicine were included,and the proportion of males was higher than that of females,and middle-aged and elderly people were the most common group.A total of 2170 prescriptions of traditional Chinese medicine were included,involving a total of 383 traditional Chinese medicines.High-frequency medicines included poria,Radix Bupleuri,Radix Scutellariae,Herba Pogostemonis,Fructus Forsythiae,Flos Loniceraeetc.The four natures were mainly concentrated in cold,warm and neutral,and the five flavors were mainly concentrated in bitter,pungent and sweet.The herbal medicines were mainly attributed to the lungs and stomach meridians,and were mainly of heat-clearing,exterior syndrome-relieving and diuresis-promoting and damp-clearing types.A total of 24 high-frequency herbal combinations and 35 association rule were excavated,and 3 types of formulas were obtained by cluster analysis.[Conclusions]The analysis results and medicine combinations obtained in the formulas are consistent with the traditional Chinese medicine treatment theory of COVID-19 caused by wind-heat filth accompanied with damp and toxin.展开更多
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional...Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.展开更多
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis...Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ...Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed...The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed by agronomy and foodstuff science. This research mainly focuses on 10 principles in the field of eaters' health and shiance order and in addition, there are also five lemmas that extend from the above principles. The 10 principles are the core theory of the shiology knowledge system, which play an important role in the objective principles revealed by human beings and constitute one of the basic principles of human civilization. Compared with the scientific principles of mathematics, physics, chemistry and economics, the principles of shiology have three characteristics as popularity, practicability and survivability. The principles of shiology in the field of eaters' health are all around us, and everyone can understand and master them. Using the principles of shiology can improve the healthy life span of 8 billion people. The principles of shiology in the field of shiance order is an important tool of social governance, which can reduce human social conflicts, reduce social involution, improve overall efficiency of social operation, and maintain the sustainable development of human beings.展开更多
Breastfeeding practices are influenced by multifactorial determinants including individual characteristics,external support systems,and media influences.This commentary emphasizes such complex factors influencing brea...Breastfeeding practices are influenced by multifactorial determinants including individual characteristics,external support systems,and media influences.This commentary emphasizes such complex factors influencing breastfeeding practices.Potential methodological limitations and the need for diverse sampling in studying breastfeeding practices are highlighted.Further research must explore the interplay between social influences,cultural norms,government policies,and individual factors in shaping maternal breastfeeding decisions.展开更多
Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobeha...Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobehavioral determinants of SCI self-care behavior, such as impulsivity, are not widely studied, yet understanding them could inform efforts to improve SCI self-care. We explored associations between impulsivity and self-care in an observational study of 35 US adults age 18 - 50 who had traumatic SCI with paraplegia at least six months before assessment. The primary outcome measure was self-reported self-care. In LASSO regression models that included all neurobehavioral measures and demographics as predictors of self-care, dispositional measures of greater impulsivity (negative urgency, lack of premeditation, lack of perseverance), and reduced mindfulness were associated with reduced self-care. Outcome (magnitude) sensitivity, a latent decision-making parameter derived from computationally modeling successive choices in a gambling task, was also associated with self-care behavior. These results are preliminary;more research is needed to demonstrate the utility of these findings in clinical settings. Information about associations between impulsivity and poor self-care in people with SCI could guide the development of interventions to improve SCI self-care and help patients with elevated risks related to self-care and secondary health conditions.展开更多
BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available bi...BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.展开更多
To effectively deal with fuzzy and uncertain information in public engineering emergencies,an emergency decision-making method based on multi-granularity language information is proposed.Firstly,decision makers select...To effectively deal with fuzzy and uncertain information in public engineering emergencies,an emergency decision-making method based on multi-granularity language information is proposed.Firstly,decision makers select the appropriate language phrase set according to their own situation,give the preference information of the weight of each key indicator,and then transform the multi-granularity language information through consistency.On this basis,the sequential optimization technology of the approximately ideal scheme is introduced to obtain the weight coefficient of each key indicator.Subsequently,the weighted average operator is used to aggregate the preference information of each alternative scheme with the relative importance of decision-makers and the weight of key indicators in sequence,and the comprehensive evaluation value of each scheme is obtained to determine the optimal scheme.Lastly,the effectiveness and practicability of the method are verified by taking the earthwork collapse accident in the construction of a reservoir as an example.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
文摘The consensus of the automotive industry and traffic management authorities is that autonomous vehicles must follow the same traffic laws as human drivers.Using formal or digital methods,natural language traffic rules can be translated into machine language and used by autonomous vehicles.In this paper,a translation flow is designed.Beyond the translation,a deeper examination is required,because the semantics of natural languages are rich and complex,and frequently contain hidden assumptions.The issue of how to ensure that digital rules are accurate and consistent with the original intent of the traffic rules they represent is both significant and unresolved.In response,we propose a method of formal verification that combines equivalence verification with model checking.Reasonable and reassuring digital traffic rules can be obtained by utilizing the proposed traffic rule digitization flow and verification method.In addition,we offer a number of simulation applications that employ digital traffic rules to assess vehicle violations.The experimental findings indicate that our digital rules utilizing metric temporal logic(MTL)can be easily incorporated into simulation platforms and autonomous driving systems(ADS).
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
基金Supported by Public Health and Epidemic Prevention and Control Project of Guiyang Bureau of Science and Technology([2022]-4-4-5)Guizhou Provincial Key Discipline of Traditional Chinese Medicine and Ethnic Medicine:Clinical Traditional Chinese Medicine(QZYYZDXK(JS)-2023-04).
文摘[Objectives]This study was conducted to analyze the medication rules of clinical prescriptions of traditional Chinese medicine decoction pieces for the treatment of novel coronavirus pneumonia(COVID-19)during the epidemic in multiple regions based on data mining technology,so as to provide a reference for the treatment of COVID-19 with traditional Chinese medicine.[Methods]The traditional Chinese medicine prescriptions used since the outbreak of COVID-19 in Hubei Province during the fight against the epidemic from February 25,2020 to February 14,2022,the traditional Chinese medicine prescriptions used by Guizhou traditional Chinese medicine expert team aiding Hubei Province,the traditional Chinese medicine prescriptions for rehabilitation and conditioning of patients in Ezhou of Hubei Province after discharge,the traditional Chinese medicine prescriptions for the prevention and treatment of COVID-19 in Guizhou Province,and the traditional Chinese medicine prescriptions for the treatment of COVID-19 collected from the end of 2019 to the present from the Chinese database of CNKI were collected as the data of this study.Excel was used to establish a database and enter it into the TCM inheritance calculation platform V3.5,and the association rules and k-means clustering algorithm were used to analyze the frequency of herbal medicines in prescriptions during the treatment of COVID-19,the frequency of four natures,five flavors,meridian distribution,and drug combinations.[Results]A total of 1859 COVID-19 patients treated with traditional Chinese medicine were included,and the proportion of males was higher than that of females,and middle-aged and elderly people were the most common group.A total of 2170 prescriptions of traditional Chinese medicine were included,involving a total of 383 traditional Chinese medicines.High-frequency medicines included poria,Radix Bupleuri,Radix Scutellariae,Herba Pogostemonis,Fructus Forsythiae,Flos Loniceraeetc.The four natures were mainly concentrated in cold,warm and neutral,and the five flavors were mainly concentrated in bitter,pungent and sweet.The herbal medicines were mainly attributed to the lungs and stomach meridians,and were mainly of heat-clearing,exterior syndrome-relieving and diuresis-promoting and damp-clearing types.A total of 24 high-frequency herbal combinations and 35 association rule were excavated,and 3 types of formulas were obtained by cluster analysis.[Conclusions]The analysis results and medicine combinations obtained in the formulas are consistent with the traditional Chinese medicine treatment theory of COVID-19 caused by wind-heat filth accompanied with damp and toxin.
基金National Natural Science Foundation of China Nos.61962054 and 62372353.
文摘Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.
基金National Natural Science Foundation of China(62073212).
文摘Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金funded by the National Science Foundation of China(62006068)Hebei Natural Science Foundation(A2021402008),Natural Science Foundation of Scientific Research Project of Higher Education in Hebei Province(ZD2020185,QN2020188)333 Talent Supported Project of Hebei Province(C20221026).
文摘Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
文摘The objective principles of shiology are mainly reflected in three fields as food acquisition, eaters' health and shiance order. Most of the objective principles in the field of food acquisition have been revealed by agronomy and foodstuff science. This research mainly focuses on 10 principles in the field of eaters' health and shiance order and in addition, there are also five lemmas that extend from the above principles. The 10 principles are the core theory of the shiology knowledge system, which play an important role in the objective principles revealed by human beings and constitute one of the basic principles of human civilization. Compared with the scientific principles of mathematics, physics, chemistry and economics, the principles of shiology have three characteristics as popularity, practicability and survivability. The principles of shiology in the field of eaters' health are all around us, and everyone can understand and master them. Using the principles of shiology can improve the healthy life span of 8 billion people. The principles of shiology in the field of shiance order is an important tool of social governance, which can reduce human social conflicts, reduce social involution, improve overall efficiency of social operation, and maintain the sustainable development of human beings.
文摘Breastfeeding practices are influenced by multifactorial determinants including individual characteristics,external support systems,and media influences.This commentary emphasizes such complex factors influencing breastfeeding practices.Potential methodological limitations and the need for diverse sampling in studying breastfeeding practices are highlighted.Further research must explore the interplay between social influences,cultural norms,government policies,and individual factors in shaping maternal breastfeeding decisions.
文摘Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobehavioral determinants of SCI self-care behavior, such as impulsivity, are not widely studied, yet understanding them could inform efforts to improve SCI self-care. We explored associations between impulsivity and self-care in an observational study of 35 US adults age 18 - 50 who had traumatic SCI with paraplegia at least six months before assessment. The primary outcome measure was self-reported self-care. In LASSO regression models that included all neurobehavioral measures and demographics as predictors of self-care, dispositional measures of greater impulsivity (negative urgency, lack of premeditation, lack of perseverance), and reduced mindfulness were associated with reduced self-care. Outcome (magnitude) sensitivity, a latent decision-making parameter derived from computationally modeling successive choices in a gambling task, was also associated with self-care behavior. These results are preliminary;more research is needed to demonstrate the utility of these findings in clinical settings. Information about associations between impulsivity and poor self-care in people with SCI could guide the development of interventions to improve SCI self-care and help patients with elevated risks related to self-care and secondary health conditions.
文摘BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.
文摘To effectively deal with fuzzy and uncertain information in public engineering emergencies,an emergency decision-making method based on multi-granularity language information is proposed.Firstly,decision makers select the appropriate language phrase set according to their own situation,give the preference information of the weight of each key indicator,and then transform the multi-granularity language information through consistency.On this basis,the sequential optimization technology of the approximately ideal scheme is introduced to obtain the weight coefficient of each key indicator.Subsequently,the weighted average operator is used to aggregate the preference information of each alternative scheme with the relative importance of decision-makers and the weight of key indicators in sequence,and the comprehensive evaluation value of each scheme is obtained to determine the optimal scheme.Lastly,the effectiveness and practicability of the method are verified by taking the earthwork collapse accident in the construction of a reservoir as an example.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.