The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of a...The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.展开更多
On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.Th...On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.The numerical experiments and physical analysis of the results confirm the efficiency of the proposed WA-systems of Kravchenko functions.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current...This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.展开更多
This paper proposes the design and development of virtual experimental projects in the Digital Signal Processing course,using MATLAB,Proteus,and CCS platforms to develop a library of typical experimental cases for bio...This paper proposes the design and development of virtual experimental projects in the Digital Signal Processing course,using MATLAB,Proteus,and CCS platforms to develop a library of typical experimental cases for biomedical engineering majors and discusses the design process.Based on these typical cases,this paper explores the secondary design for innovative engineering practice case teaching,which can promote students’understanding and mastery of digital signal processing theories,algorithms,and technologies in an intuitive,flexible,and efficient way;quickly build new innovative engineering case models and further cultivate students’engineering application ability as well as innovative thinking.展开更多
The absolute delay caused by equipment of radio navigation satellite service (RNSS) signal channel must be calibrated in the application of positioning. The measurement accuracy of absolute delay will affect the posit...The absolute delay caused by equipment of radio navigation satellite service (RNSS) signal channel must be calibrated in the application of positioning. The measurement accuracy of absolute delay will affect the positioning precision of RNSS user. An absolute delay measurement technique using digital envelope detection was developed for RNSS signal transmission channel. The RNSS transmission signal of navigation satellite and the one pulse per second (1PPS)generated by satellite time keeping system were sampled synchronously. With sampling data of 1PPS,the reference point of the absolute delay can be decided at first,and then sampling data of RNSS transmission signal were truncated. The truncated data were processed using digital envelop detection algorithm to search the phase converting points of RNSS signal. Finally,the absolute delay of RNSS signal transmitting channel was calculated. Uncertainty of measurement with proposed technique is lower than 0. 2 ns as the sampling frequency is 10 GHz.展开更多
Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms,while energy characteristics are crucial for practical application because any hardware realiz...Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms,while energy characteristics are crucial for practical application because any hardware realizations of nonlinear systems are relative to energy flow.The involvement of memristive terms relative to memristors enables multistability and initial-dependent property in memristive systems.In this study,two kinds of memristors are used to couple a capacitor or an inductor,along with a nonlinear resistor,to build different neural circuits.The corresponding circuit equations are derived to develop two different types of memristive oscillators,which are further converted into two kinds of memristive maps after linear transformation.The Hamilton energy function for memristive oscillators is obtained by applying the Helmholz theorem or by mapping from the field energy of the memristive circuits.The Hamilton energy functions for both memristive maps are obtained by replacing the gains and discrete variables for the memristive oscillator with the corresponding parameters and variables.The two memristive maps have rich dynamic behaviors including coherence resonance under noisy excitation,and an adaptive growth law for parameters is presented to express the self-adaptive property of the memristive maps.A digital signal process(DSP)platform is used to verify these results.Our scheme will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map-energy calculation.展开更多
Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions.Due to the complexity of the signal routing in a general mesh,a particular syn...Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions.Due to the complexity of the signal routing in a general mesh,a particular synthesis algorithm often only accounts for a specific function with a specific cell configuration.In this paper,we try to synthesize the programmable waveguide mesh to support multiple configurations with a more general digital signal processing platform.To show the feasibility of this technique,photonic waveguide meshes in different configurations(square,triangular and hexagonal meshes)are designed to realize optical signal interleaving with arbitrary duty cycles.The digital signal processing(DSP)approach offers an effective pathway for the establishment of a general design platform for the software-defined programmable photonic integrated circuits.The use of well-developed DSP techniques and algorithms establishes a link between optical and electrical signals and makes it convenient to realize the computer-aided design of optics–electronics hybrid systems.展开更多
In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
对混沌系统的研究是当前非线性系统研究的热点之一。以简化Lorenz混沌系统为例,在DSP(Digital Signal Processor)平台上实现了该混沌系统,从软、硬件设计两方面详细叙述了DSP实现混沌系统的过程。实验结果表明,示波器观察的吸引子相图...对混沌系统的研究是当前非线性系统研究的热点之一。以简化Lorenz混沌系统为例,在DSP(Digital Signal Processor)平台上实现了该混沌系统,从软、硬件设计两方面详细叙述了DSP实现混沌系统的过程。实验结果表明,示波器观察的吸引子相图与计算机理论仿真的结果一致。本方法为混沌系统的进一步应用提供了技术基础。展开更多
文摘The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.
基金Russian Foundation for Basic Research(RFBR)(No.12-02-90425)
文摘On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.The numerical experiments and physical analysis of the results confirm the efficiency of the proposed WA-systems of Kravchenko functions.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
文摘This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.
基金the 2021 Experimental Teaching Reform Project of Shanghai University of Medicine&Health Sciences“Digital Signal Processing Course Design”(Project Number:JG(21)04-B4-02).
文摘This paper proposes the design and development of virtual experimental projects in the Digital Signal Processing course,using MATLAB,Proteus,and CCS platforms to develop a library of typical experimental cases for biomedical engineering majors and discusses the design process.Based on these typical cases,this paper explores the secondary design for innovative engineering practice case teaching,which can promote students’understanding and mastery of digital signal processing theories,algorithms,and technologies in an intuitive,flexible,and efficient way;quickly build new innovative engineering case models and further cultivate students’engineering application ability as well as innovative thinking.
基金National Science and Technology Major Project of China(No.DHZX01A02004)
文摘The absolute delay caused by equipment of radio navigation satellite service (RNSS) signal channel must be calibrated in the application of positioning. The measurement accuracy of absolute delay will affect the positioning precision of RNSS user. An absolute delay measurement technique using digital envelope detection was developed for RNSS signal transmission channel. The RNSS transmission signal of navigation satellite and the one pulse per second (1PPS)generated by satellite time keeping system were sampled synchronously. With sampling data of 1PPS,the reference point of the absolute delay can be decided at first,and then sampling data of RNSS transmission signal were truncated. The truncated data were processed using digital envelop detection algorithm to search the phase converting points of RNSS signal. Finally,the absolute delay of RNSS signal transmitting channel was calculated. Uncertainty of measurement with proposed technique is lower than 0. 2 ns as the sampling frequency is 10 GHz.
基金supported by the National Natural Science Foundation of China(No.12072139).
文摘Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms,while energy characteristics are crucial for practical application because any hardware realizations of nonlinear systems are relative to energy flow.The involvement of memristive terms relative to memristors enables multistability and initial-dependent property in memristive systems.In this study,two kinds of memristors are used to couple a capacitor or an inductor,along with a nonlinear resistor,to build different neural circuits.The corresponding circuit equations are derived to develop two different types of memristive oscillators,which are further converted into two kinds of memristive maps after linear transformation.The Hamilton energy function for memristive oscillators is obtained by applying the Helmholz theorem or by mapping from the field energy of the memristive circuits.The Hamilton energy functions for both memristive maps are obtained by replacing the gains and discrete variables for the memristive oscillator with the corresponding parameters and variables.The two memristive maps have rich dynamic behaviors including coherence resonance under noisy excitation,and an adaptive growth law for parameters is presented to express the self-adaptive property of the memristive maps.A digital signal process(DSP)platform is used to verify these results.Our scheme will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map-energy calculation.
文摘Programmable photonic waveguide meshes can be programmed into many different circuit topologies and thereby provide a variety of functions.Due to the complexity of the signal routing in a general mesh,a particular synthesis algorithm often only accounts for a specific function with a specific cell configuration.In this paper,we try to synthesize the programmable waveguide mesh to support multiple configurations with a more general digital signal processing platform.To show the feasibility of this technique,photonic waveguide meshes in different configurations(square,triangular and hexagonal meshes)are designed to realize optical signal interleaving with arbitrary duty cycles.The digital signal processing(DSP)approach offers an effective pathway for the establishment of a general design platform for the software-defined programmable photonic integrated circuits.The use of well-developed DSP techniques and algorithms establishes a link between optical and electrical signals and makes it convenient to realize the computer-aided design of optics–electronics hybrid systems.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
文摘对混沌系统的研究是当前非线性系统研究的热点之一。以简化Lorenz混沌系统为例,在DSP(Digital Signal Processor)平台上实现了该混沌系统,从软、硬件设计两方面详细叙述了DSP实现混沌系统的过程。实验结果表明,示波器观察的吸引子相图与计算机理论仿真的结果一致。本方法为混沌系统的进一步应用提供了技术基础。
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM202300056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).