Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and fiel...Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement.展开更多
Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw d...Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition.展开更多
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati...Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.展开更多
The microcosmic reaction mechanism of the thermal decomposition of potassium nitroformate(KNF) has been investigated by density functional theory within the generalized gradient approximation. The geometric structur...The microcosmic reaction mechanism of the thermal decomposition of potassium nitroformate(KNF) has been investigated by density functional theory within the generalized gradient approximation. The geometric structures of reactants, intermediates, transition states, and products are fully optimized. The frequency analysis approves the authenticity of intermediates and transition states. Our results show that there are four feasible reaction pathways. The main pathway of the reaction is KNF → B1 → TSB1 → B2 → TSB2 → B3 → TSB3 → B4 → KNO2 + NO2 + NO + CO, and the energy barrier of the rate-limiting step is 216.30 k J·mol^-1. The dominant products predicted theoretically are KNO2, NO2, NO, and CO, which is in agreement with the experiment.展开更多
For managing product development process of industrial enterprise in effect, an ProA model was brought out on the basis of discussing relationship between activity and process. Product development activity decompositi...For managing product development process of industrial enterprise in effect, an ProA model was brought out on the basis of discussing relationship between activity and process. Product development activity decomposition scheme exist plenty of constraint. Activity information decomposition based on ProA can quantitative decompose activity information, eliminate useless, unnecessary, redundancy information, guarantee information decomposition balance and information quality.展开更多
In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously pe...In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
Long-term growth of artificial pure forest will lead to continuous planting obstacle. The best solution is to form mixed forest through introducing other regenerated tree species. In order to direct the option of m...Long-term growth of artificial pure forest will lead to continuous planting obstacle. The best solution is to form mixed forest through introducing other regenerated tree species. In order to direct the option of mixed tree species and ratios on upper reach of Minjiang river, sltu incubations of soil mixture of depth O-lOcm (humus soil of coniferous with deciduous tbrest, in this way to model mixed-forest) of typical forests of Cercidiphyllum japonicum(L), Betula utilis(H), Pinus yunnansinsis(M) and Picea asperata(Y) were carried out and the interspecific relationships were studied through analyzing the influences of soil mixing on the biochemical characteristics of soil and Jitter decomposition. The results can be concluded as following: (1) In forestlands of C.japonicum, P.yunnansinsis amt P.asperata, enzyme activities of urease, invertase and catalase of soil were intensified after soil mixing. Whereas, in forestland of B.utilis, all the three enzyme activities of soil were decreased after mixing with soil of P.yunnansinsis, but after mixing with soil of P.asperata, enzyme activities of urease and catalase were intensified and enzyme activity of invertase was decreased (2) Litter decomposition were popularly advanced after soil mixing. In forestlands of C.japonieum, P.yunnansinsis, the contents of organic-C and total N in soil were increased after soil mixing. Whereas, in forestland of B.utilis and P.asperata, the contents of N in soil were increased while organic-C decreased after soil mixing. (3) The acidities or alkalinity of soil were neutralized and further intensified after soil mixing, which means that soil of deciduous forest develops toward acidity while soil of coniferous forest develops toward to alkalinity. (4) Mixed ratios of LM0.15-0.50 and LY0.15-0.35 in forestland of C.japonicum, HM0.15 and HY0.15-0.50 in forestland of B.utilis, MI.,0.15-0.50 and MH0.35-0.50 in forest/and of P.yunnansinsis, YL0.35-0.50 and YH0.35 in forestland of P.asperata are betterchoice for soil mixing relatively, which can be taken as reference in decision of introducing regenerated tree species and ratio of mixed forest in practice.展开更多
During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationsh...During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m^2) and five small(30–40 m^2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.展开更多
文摘Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement.
基金supported by the Soil Erosion and Dryland Farming on Loess Plateau of the State Key Laboratory of Chinese Academy of Sciences (K318009902-1310) the Shaanxi Province Innovative Engineering Project Coordinator (2011K01-48)
文摘Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition.
基金the HKRGC GRF 12306616,12200317,12300218 and 12300519,and HKU Grant 104005583.
文摘Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ131318,KJ1401227,KJ15012002)the Fuling Science and Technology Commission(FLKJ2015ABA1042)the Project of Chongqing Key Laboratory of Inorganic Special Functional Materials(KFKT201506)
文摘The microcosmic reaction mechanism of the thermal decomposition of potassium nitroformate(KNF) has been investigated by density functional theory within the generalized gradient approximation. The geometric structures of reactants, intermediates, transition states, and products are fully optimized. The frequency analysis approves the authenticity of intermediates and transition states. Our results show that there are four feasible reaction pathways. The main pathway of the reaction is KNF → B1 → TSB1 → B2 → TSB2 → B3 → TSB3 → B4 → KNO2 + NO2 + NO + CO, and the energy barrier of the rate-limiting step is 216.30 k J·mol^-1. The dominant products predicted theoretically are KNO2, NO2, NO, and CO, which is in agreement with the experiment.
文摘For managing product development process of industrial enterprise in effect, an ProA model was brought out on the basis of discussing relationship between activity and process. Product development activity decomposition scheme exist plenty of constraint. Activity information decomposition based on ProA can quantitative decompose activity information, eliminate useless, unnecessary, redundancy information, guarantee information decomposition balance and information quality.
基金supported by National Natural Science Foundation of China(Grant No.61761011)Natural Science Foundation of Guangxi(Grant No.2020GXNSFBA297078).
文摘In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.
文摘Long-term growth of artificial pure forest will lead to continuous planting obstacle. The best solution is to form mixed forest through introducing other regenerated tree species. In order to direct the option of mixed tree species and ratios on upper reach of Minjiang river, sltu incubations of soil mixture of depth O-lOcm (humus soil of coniferous with deciduous tbrest, in this way to model mixed-forest) of typical forests of Cercidiphyllum japonicum(L), Betula utilis(H), Pinus yunnansinsis(M) and Picea asperata(Y) were carried out and the interspecific relationships were studied through analyzing the influences of soil mixing on the biochemical characteristics of soil and Jitter decomposition. The results can be concluded as following: (1) In forestlands of C.japonicum, P.yunnansinsis amt P.asperata, enzyme activities of urease, invertase and catalase of soil were intensified after soil mixing. Whereas, in forestland of B.utilis, all the three enzyme activities of soil were decreased after mixing with soil of P.yunnansinsis, but after mixing with soil of P.asperata, enzyme activities of urease and catalase were intensified and enzyme activity of invertase was decreased (2) Litter decomposition were popularly advanced after soil mixing. In forestlands of C.japonieum, P.yunnansinsis, the contents of organic-C and total N in soil were increased after soil mixing. Whereas, in forestland of B.utilis and P.asperata, the contents of N in soil were increased while organic-C decreased after soil mixing. (3) The acidities or alkalinity of soil were neutralized and further intensified after soil mixing, which means that soil of deciduous forest develops toward acidity while soil of coniferous forest develops toward to alkalinity. (4) Mixed ratios of LM0.15-0.50 and LY0.15-0.35 in forestland of C.japonicum, HM0.15 and HY0.15-0.50 in forestland of B.utilis, MI.,0.15-0.50 and MH0.35-0.50 in forest/and of P.yunnansinsis, YL0.35-0.50 and YH0.35 in forestland of P.asperata are betterchoice for soil mixing relatively, which can be taken as reference in decision of introducing regenerated tree species and ratio of mixed forest in practice.
基金supported by the Foundation of Guangdong Forestry Bureau of China(Nos.F11031 and F15141)
文摘During January–February 2008, a severe ice storm caused significant damages to forests in southern China, creating canopy gaps and changing soil nutrient availability and enzyme activity. To understand the relationships between gap size, changes in the soil environment and the effects that these changes have on soil processes, we investigated the effects of gap size on soil chemical and biological properties in the forest gaps in a Cunninghamia lanceolata stand in northern Guangdong Province, southern China. Ten naturally created gaps, five large(80–100 m^2) and five small(30–40 m^2), were selected in the stand of C.lanceolata. The large gaps showed a significant increase in light transmission ratio and air and soil temperatures and a decline in soil moisture, organic matter,N and P compared with the small gaps and the adjacent canopy-covered plots in the 0–10 cm soil. The differences in organic matter and nutrient levels found between the large and small gaps and the canopy-covered plots may be related to changes in environmental conditions. This indicated rapid litter decomposition and increased nutrient leaching in the large gaps. Moreover, the lowest levels of catalase, acid phosphatase and urease activities occurred in large gaps because of the decline in their soil fertility. Large forest gaps may have a region of poor fertility, reducing soil nutrient availability and enzyme activity within the C.lanceolata stand.