An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
This paper presents a detailed analysis of the effects of noise (reverberation) on the focusing performance of de-composition of the time reversal operator (DORT) in a noise-limited case and in a reverberation-limited...This paper presents a detailed analysis of the effects of noise (reverberation) on the focusing performance of de-composition of the time reversal operator (DORT) in a noise-limited case and in a reverberation-limited case, respectively. Quantitative results obtained from simulations and experiments are presented. The results show the DORT method can be effi-ciently applied to target detection with enough source level to yield significant backscatter. For a target placed on the bottom, the influence of the reverberation on the focusing performance is slight. However, distinguishing between a target and constant backscattering returning from strong local clutter on the bottom (false alarms) needs further research.展开更多
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
基金Project supported by the National Natural Science Foundation of China (Nos. 60702022 and 60772094)the National Basic Re-search Program (973) of China (No. 5132103ZZT21B)
文摘This paper presents a detailed analysis of the effects of noise (reverberation) on the focusing performance of de-composition of the time reversal operator (DORT) in a noise-limited case and in a reverberation-limited case, respectively. Quantitative results obtained from simulations and experiments are presented. The results show the DORT method can be effi-ciently applied to target detection with enough source level to yield significant backscatter. For a target placed on the bottom, the influence of the reverberation on the focusing performance is slight. However, distinguishing between a target and constant backscattering returning from strong local clutter on the bottom (false alarms) needs further research.