Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in ...Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in the gaps formed in the montane forest stands.The research was carried out in the Babiog orski National Park.The research plots were marked out in the gaps of the stands,which were formed as a result of bark beetle gradation.Control plots were located in undisturbed stands.The research covered wood of two species–spruce and beech in the form of cubes with dimensions of 50 mm×50 mm×22 mm.Wood samples were placed directly on the soil surface and subjected to laboratory analysis after 36 months.A significant influence of the wood species and the study plot type on the physicochemical properties of the tested wood samples was found.Wood characteristics strongly correlated with soil moisture.A significantly higher mass decline of wood samples was recorded on the reference study plots,which were characterized by more stable moisture conditions.Poorer decomposition of wood in the gaps regardless of the species is related to lower moisture.The wood species covered by the study differed in the decomposition rate.Spruce wood samples were characterized by a significantly higher decomposition rate compared to beech wood samples.Our research has confirmed that disturbances that lead to the formation of gaps have a direct impact on the decomposition process of deadwood.展开更多
Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the chall...Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors.展开更多
Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario...Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.展开更多
Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O ...Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well.展开更多
In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning r...In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning rate study has been carried out at ambient and different pressures of 2.068 Mpa, 4.760 Mpa,6.895 Mpa. The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser, comprising differential scanning calorimeter(DSC) and thermo-gravimetric analyser(TGA). An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe_2O_3 and also their overall impact on combustion of propellant.展开更多
The litterbag method was used to study the decomposition of wetland plant root in three wetlands along a water level gradient in the Sanjiang Plain,Northeast China.These wetlands are Calamagrostis angustifolia(C.aa),C...The litterbag method was used to study the decomposition of wetland plant root in three wetlands along a water level gradient in the Sanjiang Plain,Northeast China.These wetlands are Calamagrostis angustifolia(C.aa),Carex meyeriana(C.ma)and Carex lasiocarpa (C.la).The objective of our study is to evaluate the influence of environment and substrate quality on decomposition rates in the three wetlands.Calico material was used as a standard substrate to evaluate environmental influences.Roots native to each we...展开更多
The changes of electrical resistance (R) were studied experimentally in the process of CH4 hydrate formation and decomposition, using temperature and pressure as the auxiliary detecting methods simultaneously. The e...The changes of electrical resistance (R) were studied experimentally in the process of CH4 hydrate formation and decomposition, using temperature and pressure as the auxiliary detecting methods simultaneously. The experiment results show that R increases with hydrate formation and decreases with hydrate decompositon. R is more sensitive to hydrate formation and decompositon than temperature or pressure, which indicates that the detection of R will be an effective means for detecting natural gas hydrate (NGH) quantitatively.展开更多
According to the dimer theory on semiconductor surface and chemical vapor deposition(CVD) growth characteristics of Si1-xGex, two mechanisms of rate decomposition and discrete flow density are proposed. Based on these...According to the dimer theory on semiconductor surface and chemical vapor deposition(CVD) growth characteristics of Si1-xGex, two mechanisms of rate decomposition and discrete flow density are proposed. Based on these two mechanisms, the Grove theory and Fick's first law, a CVD growth kinetics model of Si1-xGex alloy is established. In order to make the model more accurate, two growth control mechanisms of vapor transport and surface reaction are taken into account. The paper also considers the influence of the dimer structure on the growth rate. The results show that the model calculated value is consistent with the experimental values at different temperatures.展开更多
Based on physicochemical study of the reaction between scheelite and NaOH, a new decomposition process for scheelite and scheelitewolframite concentrate, i. e., mechenically activating caustic decomposition has bee...Based on physicochemical study of the reaction between scheelite and NaOH, a new decomposition process for scheelite and scheelitewolframite concentrate, i. e., mechenically activating caustic decomposition has been developed, and it has been successfu展开更多
Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposit...Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposition and,ultimately, affect ecosystem C storage and nutrient status. Temperate grassland ecosystems in China are usually N-deficient and particularly sensitive to the changes in exogenous N additions. In this paper, we conducted a 1,200-day in situ experiment in a typical semi-arid temperate steppe in Inner Mongolia to investigate the litter decomposition as well as the dynamics of litter C and N concentrations under three N addition levels(low N with 50 kg N/(hm2?a)(LN), medium N with 100 kg N/(hm2?a)(MN), and high N with 200 kg N/(hm2?a)(HN)) and three N addition forms(ammonium-N-based with 100 kg N/(hm2?a) as ammonium sulfate(AS), nitrate-N-based with 100 kg N/(hm2?a) as sodium nitrate(SN), and mixed-N-based with 100 kg N/(hm2?a) as calcium ammonium nitrate(CAN)) compared to control with no N addition(CK). The results indicated that the litter mass remaining in all N treatments exhibited a similar decomposition pattern: fast decomposition within the initial 120 days, followed by a relatively slow decomposition in the remaining observation period(120–1,200 days). The decomposition pattern in each treatment was fitted well in two split-phase models, namely, a single exponential decay model in phase I(〈398 days) and a linear decay function in phase II(≥398 days). The three N addition levels exerted insignificant effects on litter decomposition in the early stages(〈398 days, phase I; P〉0.05). However, MN and HN treatments inhibited litter mass loss after 398 and 746 days, respectively(P〈0.05). AS and SN treatments exerted similar effects on litter mass remaining during the entire decomposition period(P〉0.05). The effects of these two N addition forms differed greatly from those of CAN after 746 and 1,053 days, respectively(P〈0.05). During the decomposition period, N concentrations in the decomposing litter increased whereas C concentrations decreased, which also led to an exponential decrease in litter C:N ratios in all treatments. No significant effects were induced by N addition levels and forms on litter C and N concentrations(P〉0.05). Our results indicated that exogenous N additions could exhibit neutral or inhibitory effects on litter decomposition, and the inhibitory effects of N additions on litter decomposition in the final decay stages are not caused by the changes in the chemical qualities of the litter, such as endogenous N and C concentrations. These results will provide an important data basis for the simulation and prediction of C cycle processes in future N-deposition scenarios.展开更多
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te...Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.展开更多
In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient dow...In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate.展开更多
Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using th...Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple.展开更多
The decomposition behaviors of methane hydrate below the ice melting point in porous media with different particle size and different pore size were studied.The silica gels with the particle size of 105–150μm,150–...The decomposition behaviors of methane hydrate below the ice melting point in porous media with different particle size and different pore size were studied.The silica gels with the particle size of 105–150μm,150–200μm and 300–450μm,and the mean pore diameters of 12.95 nm,17.96 nm and 33.20 nm were used in the experiments.Methane recovery and temperature change curves were determined for each experiment.The hydrate decomposition process in the experiments can be divided into the depressurization period and the isobaric period.The temperature in the system decreases quickly in the depressurization process with the hydrate decomposition and reaches the lowest point in the isobaric period.The hydrate decomposition in porous media below ice-melting point is very fast and no self-perseveration effect is observed.The hydrate decomposition is influenced both by the driving force and the initial hydrate saturation.In the experiments with the high hydrate saturation,the hydrate decomposition will stop when the pressure reaches the equilibrium dissociation pressure.The stable pressure in the experiment with high hydrate saturation exceeds the equilibrium dissociation pressure of bulk hydrate and increases with the decrease of the pore size.展开更多
The decomposition process for zircon sand concentrate using mixed base of sodium hydroxide partly replaced by calcium oxide was inrestigated.It is found that the decomposition rate of zircon gradually increased with t...The decomposition process for zircon sand concentrate using mixed base of sodium hydroxide partly replaced by calcium oxide was inrestigated.It is found that the decomposition rate of zircon gradually increased with the increase of the reaction temperature and time.The decomposition rate is over 97% with the conditions that CaO/zircon molar ratio is 0.25 ~ 0.75 at 800 ℃ for 1 h.Whereas the decomposition rate decreased when the molar ratio was more than 0.75.Also,thermogravimetry-differential thermal analysis(TG-DTA) and X-ray diffraction(XRD) were used to study the reaction mechanism of zircon decomposition process with CaO-NaOH.The results showed that Na_2O,which was generated by the reaction of CaO and Na_4SiO_4,increased the decomposition rate of zircon owing to its spread to the surface of zircon and played a role in decomposition process.展开更多
The thermal decomposition of ammonium 3-nitro-1,2,4-triazol-5-onate monohydrate[NH4(NTO)·H2O] was studied by means of thermal analysis-MS coupling and the combination technique of in situ thermolysis cell with ...The thermal decomposition of ammonium 3-nitro-1,2,4-triazol-5-onate monohydrate[NH4(NTO)·H2O] was studied by means of thermal analysis-MS coupling and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy. The results show that there are two endothermic steps and one exothermic step in the decomposition process of NH4(NTO)·H2O. The detected gas products consist of NH3, H2O, N2, CO2, CO, and NO2.展开更多
In order to design a kind of heat exchanger suitable to the indirect-touched gas hydrate cool storage vessel, a visual observation of HCFC141b gas hydrate formation/decomposition process was presented through a self-d...In order to design a kind of heat exchanger suitable to the indirect-touched gas hydrate cool storage vessel, a visual observation of HCFC141b gas hydrate formation/decomposition process was presented through a self-designed small-scale visualization apparatus of gas hydrate cool storage. Based on the shooted photos and recorded temperatures, the formation/decomposition process of HCFC141b are described, some characteristics are concluded, and some suggestions of designing heat exchanger are indicated according to the specific characteristics of HCFC141b gas hydrate formation/decomposition process.展开更多
The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were char...The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.展开更多
The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling...The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.展开更多
基金financed by the National Science Centre,Poland:decision no.DEC 2020/39/B/NZ9/00372 and decision no.DEC-2021/43/O/NZ9/00066。
文摘Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in the gaps formed in the montane forest stands.The research was carried out in the Babiog orski National Park.The research plots were marked out in the gaps of the stands,which were formed as a result of bark beetle gradation.Control plots were located in undisturbed stands.The research covered wood of two species–spruce and beech in the form of cubes with dimensions of 50 mm×50 mm×22 mm.Wood samples were placed directly on the soil surface and subjected to laboratory analysis after 36 months.A significant influence of the wood species and the study plot type on the physicochemical properties of the tested wood samples was found.Wood characteristics strongly correlated with soil moisture.A significantly higher mass decline of wood samples was recorded on the reference study plots,which were characterized by more stable moisture conditions.Poorer decomposition of wood in the gaps regardless of the species is related to lower moisture.The wood species covered by the study differed in the decomposition rate.Spruce wood samples were characterized by a significantly higher decomposition rate compared to beech wood samples.Our research has confirmed that disturbances that lead to the formation of gaps have a direct impact on the decomposition process of deadwood.
基金Financial support received from the National Natural Science Foundation of China(22178379)the National Key Research and Development Program of China(2021YFC2800902)is gratefully acknowledged.
文摘Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors.
基金the Science and Technology Project of State Grid Corporation of China,Grant Number 5108-202304065A-1-1-ZN.
文摘Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.
基金Project (IRT0974) supported by Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject (50974098) supported by the National Natural Science Foundation of China
文摘Lanthanum oxalate hydrate La2(C2O4)3·10H2O,the precursor of La2O3 ultrafine powders,was prepared by impinging stream reactor method with PEG 20000 as surfactant.Thermal decomposition of La2(C2O4)3·10H2O from room temperature to 900 °C was investigated and intermediates and final solid products were characterized by FTIR and DSC-TG.Results show that the thermal decomposition process consists of five consecutive stage reactions.Flynn-Wall-Ozawa(FWO) and Kissinger-Akahira-Sunose(KAS) methods were implemented for the calculation of energy of activation(E),and the results show that E depends on α,demonstrating that the decomposition reaction process of the lanthanum oxalate is of a complex kinetic mechanism.The most probable mechanistic function,G(α)=[1-(1+α)1/3]2,and the kinetic parameters were obtained by multivariate non-linear regression analysis method.The average E-value that is compatible with the kinetic model is close to value which was obtained by FWO and KAS methods.The fitting curve matches the original TG curve very well.
文摘In the present investigation an effort has been made to understand the thermal decomposition and burn rate characteristics of AP as oxidizer and PVC and HTPB as fuel binder in composite solid propellant. The burning rate study has been carried out at ambient and different pressures of 2.068 Mpa, 4.760 Mpa,6.895 Mpa. The mechanism of thermal decomposition of each composition have also been determined by NETZSCH simultaneous thermal analyser, comprising differential scanning calorimeter(DSC) and thermo-gravimetric analyser(TGA). An effort has been made to study the burn rate and decomposition of fuel binder and oxidizer in presence of Fe_2O_3 and also their overall impact on combustion of propellant.
基金supported by the Key Knowledge In-novation Project of Chinese Academy of Science(No.KSCX2-YW-N-46-06).
文摘The litterbag method was used to study the decomposition of wetland plant root in three wetlands along a water level gradient in the Sanjiang Plain,Northeast China.These wetlands are Calamagrostis angustifolia(C.aa),Carex meyeriana(C.ma)and Carex lasiocarpa (C.la).The objective of our study is to evaluate the influence of environment and substrate quality on decomposition rates in the three wetlands.Calico material was used as a standard substrate to evaluate environmental influences.Roots native to each we...
基金the project was supported by the National Natural Science Foundation of China(No.20490207)the Natural Science Foundation of Guangdong Province(No.05200113)
文摘The changes of electrical resistance (R) were studied experimentally in the process of CH4 hydrate formation and decomposition, using temperature and pressure as the auxiliary detecting methods simultaneously. The experiment results show that R increases with hydrate formation and decreases with hydrate decompositon. R is more sensitive to hydrate formation and decompositon than temperature or pressure, which indicates that the detection of R will be an effective means for detecting natural gas hydrate (NGH) quantitatively.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 6139801-1).
文摘According to the dimer theory on semiconductor surface and chemical vapor deposition(CVD) growth characteristics of Si1-xGex, two mechanisms of rate decomposition and discrete flow density are proposed. Based on these two mechanisms, the Grove theory and Fick's first law, a CVD growth kinetics model of Si1-xGex alloy is established. In order to make the model more accurate, two growth control mechanisms of vapor transport and surface reaction are taken into account. The paper also considers the influence of the dimer structure on the growth rate. The results show that the model calculated value is consistent with the experimental values at different temperatures.
文摘Based on physicochemical study of the reaction between scheelite and NaOH, a new decomposition process for scheelite and scheelitewolframite concentrate, i. e., mechenically activating caustic decomposition has been developed, and it has been successfu
基金funded by the National Natural Science Foundation of China (41073061, 41203054, 40730105, 40973057)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-302)
文摘Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposition and,ultimately, affect ecosystem C storage and nutrient status. Temperate grassland ecosystems in China are usually N-deficient and particularly sensitive to the changes in exogenous N additions. In this paper, we conducted a 1,200-day in situ experiment in a typical semi-arid temperate steppe in Inner Mongolia to investigate the litter decomposition as well as the dynamics of litter C and N concentrations under three N addition levels(low N with 50 kg N/(hm2?a)(LN), medium N with 100 kg N/(hm2?a)(MN), and high N with 200 kg N/(hm2?a)(HN)) and three N addition forms(ammonium-N-based with 100 kg N/(hm2?a) as ammonium sulfate(AS), nitrate-N-based with 100 kg N/(hm2?a) as sodium nitrate(SN), and mixed-N-based with 100 kg N/(hm2?a) as calcium ammonium nitrate(CAN)) compared to control with no N addition(CK). The results indicated that the litter mass remaining in all N treatments exhibited a similar decomposition pattern: fast decomposition within the initial 120 days, followed by a relatively slow decomposition in the remaining observation period(120–1,200 days). The decomposition pattern in each treatment was fitted well in two split-phase models, namely, a single exponential decay model in phase I(〈398 days) and a linear decay function in phase II(≥398 days). The three N addition levels exerted insignificant effects on litter decomposition in the early stages(〈398 days, phase I; P〉0.05). However, MN and HN treatments inhibited litter mass loss after 398 and 746 days, respectively(P〈0.05). AS and SN treatments exerted similar effects on litter mass remaining during the entire decomposition period(P〉0.05). The effects of these two N addition forms differed greatly from those of CAN after 746 and 1,053 days, respectively(P〈0.05). During the decomposition period, N concentrations in the decomposing litter increased whereas C concentrations decreased, which also led to an exponential decrease in litter C:N ratios in all treatments. No significant effects were induced by N addition levels and forms on litter C and N concentrations(P〉0.05). Our results indicated that exogenous N additions could exhibit neutral or inhibitory effects on litter decomposition, and the inhibitory effects of N additions on litter decomposition in the final decay stages are not caused by the changes in the chemical qualities of the litter, such as endogenous N and C concentrations. These results will provide an important data basis for the simulation and prediction of C cycle processes in future N-deposition scenarios.
基金Project supported by the National Natural Science Foundation of China (50306008)Advance Research Foundation forGeneral Equipment Department (41328030507)
文摘Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.
文摘In view of the limited bandwidth of underwater video image transmission,a low bit rate underwater video compression coding method is proposed.Based on the preprocessing process of wavelet transform and coefficient down-sampling,the visual redundancy of underwater image is removed and the computational coefficients and coding bits are reduced.At the same time,combined with multi-level wavelet decomposition,inter frame motion compensation,entropy coding and other methods,according to the characteristics of different types of frame image data,reduce the number of calculations and improve the coding efficiency.The experimental results show that the reconstructed image quality can meet the visual requirements,and the average compression ratio of underwater video can meet the requirements of underwater acoustic channel transmission rate.
基金Project supported by the National Natural Science Foundation of China (Grant No.30540025)
文摘Assessing the dynamics of heart rate fluctuations can provide valuable information about heart status. In this study, regularity of heart rate variability (HRV) of heart failure patients and healthy persons using the concept of singular value decomposition entropy (SvdEn) is analyzed. SvdEn is calculated from the time series using normalized singular values. The advantage of this method is its simplicity and fast computation. It enables analysis of very short and non-stationary data sets. The results show that SvdEn of patients with congestive heart failure (CHF) shows a low value (SvdEn: 0.056±0.006, p 〈 0.01) which can be completely separated from healthy subjects. In addition, differences of SvdEn values between day and night are found for the healthy groups. SvdEn decreases with age. The lower the SvdEn values, the higher the risk of heart disease. Moreover, SvdEn is associated with the energy of heart rhythm. The results show that using SvdEn for discriminating HRV in different physiological states for clinical applications is feasible and simple.
基金Supported by Key Program of National Natural Science Foundation of China(51736009)the National Natural Science Foundation of China(51476174,51576202and 51376183)+2 种基金National Key Research and Development Plan of China(2016YFC0304002)Special Project for Marine Economy Development of Guangdong Province(GDME-2018D002)Natural Science Foundation of Guangdong Province,China(2017A030313301)
文摘The decomposition behaviors of methane hydrate below the ice melting point in porous media with different particle size and different pore size were studied.The silica gels with the particle size of 105–150μm,150–200μm and 300–450μm,and the mean pore diameters of 12.95 nm,17.96 nm and 33.20 nm were used in the experiments.Methane recovery and temperature change curves were determined for each experiment.The hydrate decomposition process in the experiments can be divided into the depressurization period and the isobaric period.The temperature in the system decreases quickly in the depressurization process with the hydrate decomposition and reaches the lowest point in the isobaric period.The hydrate decomposition in porous media below ice-melting point is very fast and no self-perseveration effect is observed.The hydrate decomposition is influenced both by the driving force and the initial hydrate saturation.In the experiments with the high hydrate saturation,the hydrate decomposition will stop when the pressure reaches the equilibrium dissociation pressure.The stable pressure in the experiment with high hydrate saturation exceeds the equilibrium dissociation pressure of bulk hydrate and increases with the decrease of the pore size.
文摘The decomposition process for zircon sand concentrate using mixed base of sodium hydroxide partly replaced by calcium oxide was inrestigated.It is found that the decomposition rate of zircon gradually increased with the increase of the reaction temperature and time.The decomposition rate is over 97% with the conditions that CaO/zircon molar ratio is 0.25 ~ 0.75 at 800 ℃ for 1 h.Whereas the decomposition rate decreased when the molar ratio was more than 0.75.Also,thermogravimetry-differential thermal analysis(TG-DTA) and X-ray diffraction(XRD) were used to study the reaction mechanism of zircon decomposition process with CaO-NaOH.The results showed that Na_2O,which was generated by the reaction of CaO and Na_4SiO_4,increased the decomposition rate of zircon owing to its spread to the surface of zircon and played a role in decomposition process.
文摘The thermal decomposition of ammonium 3-nitro-1,2,4-triazol-5-onate monohydrate[NH4(NTO)·H2O] was studied by means of thermal analysis-MS coupling and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy. The results show that there are two endothermic steps and one exothermic step in the decomposition process of NH4(NTO)·H2O. The detected gas products consist of NH3, H2O, N2, CO2, CO, and NO2.
基金supported by the National Natural Science Foundation of China (No. 50176051, No. 59836230)the Satate Key Development Program for Basic Research of China (No. 2000026306).
文摘In order to design a kind of heat exchanger suitable to the indirect-touched gas hydrate cool storage vessel, a visual observation of HCFC141b gas hydrate formation/decomposition process was presented through a self-designed small-scale visualization apparatus of gas hydrate cool storage. Based on the shooted photos and recorded temperatures, the formation/decomposition process of HCFC141b are described, some characteristics are concluded, and some suggestions of designing heat exchanger are indicated according to the specific characteristics of HCFC141b gas hydrate formation/decomposition process.
基金Supported by the National Natural Science Foundation of China (50306008, 50602024).
文摘The monodispersed Co nanoparticles were successfully prepared by means of hydrogen plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by transmission electron microscopy (TEM), BET equation, X-ray diffraction (XRD), and the corresponding selected area electron diffraction (SAED). The catalytic effect of Co nanoparticles on the decomposition of ammonium perchlorate (AP) was investigated by differential thermal analyzer (DTA). Compared with the thermal decomposition of pure AP, the addition of Co nanoparticles (2%-10%, by mass) decreases the decomposition temperature of AP by 145.01-155.72℃. Compared with Co3O4 nano-particles and microsized Co particles, the catalytic effect of Co nanoparticles for AP is stronger. Such effect is attributed to the large specific surface area and its interaction of Co with decomposition intermediate gases. The present work provides useful information for the application of Co nanoparficles in the AP-based propellant.
文摘The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.