期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Temperature Distribution and ThermalStress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid–Solid Coupling Method 被引量:16
1
作者 W.Z.Tang L.Yang +3 位作者 W.Zhu Y.C.Zhou J.W.Guo C.LU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期452-458,共7页
To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer a... To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted. Based on the simulation results, it is found that a non-uniform distribution of temperature appears in different positions of the blade surface, which has directly impacted on stress field. The maximum temperature with a value of 1030 ℃ occurs at the leading edge. During the steady stage, the maximum stress of thermally grown oxide (TGO) appears in the middle of the suction side, reaching 3.75 GPa. At the end stage of cooling, the maximum compressive stress of TGO with a value of-3.5 GPa occurs at the leading edge. Thus, it can be predicted that during the steady stage the dangerous regions may locate at the suction side, while the leadine edge mav be more Drone to failure on cooling. 展开更多
关键词 Thermal barrier coatings Temperature distribution Thermal-stress field Conjugate heat transfer decoupled thermal-stress calculation Fluid–solid coupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部