With the application of strain engineering in microelectronics,complex stress states are introduced into advanced semiconductor devices.However,there is still a lack of effective metrology for the decoupling analysis ...With the application of strain engineering in microelectronics,complex stress states are introduced into advanced semiconductor devices.However,there is still a lack of effective metrology for the decoupling analysis of the complex stress states in semiconductor materials.This paper presents an investigation on the 2-axis stress component decoupling of{100}monocrystalline silicon(c-Si)by using oblique backscattering micro-Raman spectroscopy.A spectral-mechanical model was established,and two practicable methods for actual stress decoupling analyses were proposed.The verification experiments demonstrated the correctness and applicability of the methods proposed in this paper.展开更多
基金the National Key Research and Development Program of China(Grant No.2018YFB0703500)the National Natural Science Foundation of China(Grant Nos.11827802,11772223,11772227,11890680,and 61727810)。
文摘With the application of strain engineering in microelectronics,complex stress states are introduced into advanced semiconductor devices.However,there is still a lack of effective metrology for the decoupling analysis of the complex stress states in semiconductor materials.This paper presents an investigation on the 2-axis stress component decoupling of{100}monocrystalline silicon(c-Si)by using oblique backscattering micro-Raman spectroscopy.A spectral-mechanical model was established,and two practicable methods for actual stress decoupling analyses were proposed.The verification experiments demonstrated the correctness and applicability of the methods proposed in this paper.