One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three ...One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.展开更多
This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derive...This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.展开更多
In order to compensate for the limitation of conventional XY table used in semiconductor integrated circuits(IC) packaging and improve its speed and accuracy, a voice coil actuator (VCA) direct-drive high-speed and pr...In order to compensate for the limitation of conventional XY table used in semiconductor integrated circuits(IC) packaging and improve its speed and accuracy, a voice coil actuator (VCA) direct-drive high-speed and precision positioning XY table used in wire bonder was proposed. Also, a novel flexible decoupling mechanism was used in the positioning table, and the small moving mass enabled the positioning table to move at high speed and precision. XY table deformation interference caused by assembly error and instant interference generated by dynamic load moving with high speed and acceleration can be eliminated through the flexible decoupling mechanism. Considering the positioning table as lumped mass spring system,the dynamic equations of the mechanical system and the VCA were built according to the Newton mechanics principle and electromagnetic theory. Then the electromechanical coupling control model of the system was created through Laplace transform. Based on displacement PID controller, the loop-locked controlling algorithm of the positioning system was investigated. The dynamic control algorithm effectively improved the system dynamic performance. The precision test of the prototype machine was carried out, and the results validated the correctness of the model and the theory. Compared with traditional XY table, the table has higher speed, acceleration and positioning accuracy.展开更多
Capacitive sensors are efficient tools for biophysical force measurement,which is essential for the exploration of cellular behavior.However,attention has been rarely given on the influences of external mechanical and...Capacitive sensors are efficient tools for biophysical force measurement,which is essential for the exploration of cellular behavior.However,attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors.In this work,a bionic swallow structure design norm was developed for mechanical decoupling,and the influences of structural parameters on mechanical behavior were fully analyzed and optimized.A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences.Electrostatic instability was evaluated,and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and applicationspecific integrated circuit readouts.An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm,and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor,which can be easily compensated in readouts.The proposed sensor also exhibited high resistance against electrostatic rotation,and the resulting measurement error dropped below 0.751%.The rotation interferences were less than 0.330 nm and(1.829×10^(-7))°,which were 35 times smaller than those of the traditional differential one.Based on the proposed bionic decoupling method,the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/μm for gap-variant and area-variant devices,respectively,which were the highest among the current devices.High immunity to mechanical disturbances was maintained simultaneously,i.e.,less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices,respectively,indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.展开更多
EPB TBMs(Earth pressure balance Tunneling Boring Machines) are extensively used in tunneling constructions because of its high efficiency and low disturbance on structures above ground. It is critically significant to...EPB TBMs(Earth pressure balance Tunneling Boring Machines) are extensively used in tunneling constructions because of its high efficiency and low disturbance on structures above ground. It is critically significant to predict the thrust acting on TBMs under different geological conditions for both the design of power system and the control of tunneling process. The interaction between the cutterhead and the ground is the core of excavation, through which geological conditions determine the thrust re-quirement combined with operating status and structural characteristics. This paper conducted a mechanical decoupling analysis to obtain a basic expression of the cutterhead-ground interactive stress. Then more engineering factors(such as cutterhead topological structure, underground overburden, thrusts on other parts, etc.) were further considered to establish a predicting model for the total thrust acting on a machine during tunneling. Combined with three subway projects under different geological conditions in China, the model was verified and used to analyze how geological, operating and structural parameters influence the acting thrust.展开更多
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA040202)
文摘One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51305448 and 51275519)
文摘This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.
基金Supported by National Natural Science Foundation of China (No50505032)
文摘In order to compensate for the limitation of conventional XY table used in semiconductor integrated circuits(IC) packaging and improve its speed and accuracy, a voice coil actuator (VCA) direct-drive high-speed and precision positioning XY table used in wire bonder was proposed. Also, a novel flexible decoupling mechanism was used in the positioning table, and the small moving mass enabled the positioning table to move at high speed and precision. XY table deformation interference caused by assembly error and instant interference generated by dynamic load moving with high speed and acceleration can be eliminated through the flexible decoupling mechanism. Considering the positioning table as lumped mass spring system,the dynamic equations of the mechanical system and the VCA were built according to the Newton mechanics principle and electromagnetic theory. Then the electromechanical coupling control model of the system was created through Laplace transform. Based on displacement PID controller, the loop-locked controlling algorithm of the positioning system was investigated. The dynamic control algorithm effectively improved the system dynamic performance. The precision test of the prototype machine was carried out, and the results validated the correctness of the model and the theory. Compared with traditional XY table, the table has higher speed, acceleration and positioning accuracy.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.52105589 and U1909221)in part by the China Postdoctoral Science Foundation(Grant No.2021M692590)+2 种基金in part by the Fundamental Research Funds for the Central Universities,China(Grant No.xzy012021009)in part by the State Key Laboratory of Robotics and Systems(HIT),China(Grant No.SKLRS2021KF17)in part by the Beijing Advanced Innovation Center for Intelligent Robots and Systems,China(Grant No.2019IRS08).
文摘Capacitive sensors are efficient tools for biophysical force measurement,which is essential for the exploration of cellular behavior.However,attention has been rarely given on the influences of external mechanical and internal electrical interferences on capacitive sensors.In this work,a bionic swallow structure design norm was developed for mechanical decoupling,and the influences of structural parameters on mechanical behavior were fully analyzed and optimized.A bionic feather comb distribution strategy and a portable readout circuit were proposed for eliminating electrostatic interferences.Electrostatic instability was evaluated,and electrostatic decoupling performance was verified on the basis of a novel measurement method utilizing four complementary comb arrays and applicationspecific integrated circuit readouts.An electrostatic pulling experiment showed that the bionic swallow structure hardly moved by 0.770 nm,and the measurement error was less than 0.009% for the area-variant sensor and 1.118% for the gap-variant sensor,which can be easily compensated in readouts.The proposed sensor also exhibited high resistance against electrostatic rotation,and the resulting measurement error dropped below 0.751%.The rotation interferences were less than 0.330 nm and(1.829×10^(-7))°,which were 35 times smaller than those of the traditional differential one.Based on the proposed bionic decoupling method,the fabricated sensor exhibited overwhelming capacitive sensitivity values of 7.078 and 1.473 pF/μm for gap-variant and area-variant devices,respectively,which were the highest among the current devices.High immunity to mechanical disturbances was maintained simultaneously,i.e.,less than 0.369% and 0.058% of the sensor outputs for the gap-variant and area-variant devices,respectively,indicating its great performance improvements over existing devices and feasibility in ultralow biomedical force measurement.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11127202 & 11302146)
文摘EPB TBMs(Earth pressure balance Tunneling Boring Machines) are extensively used in tunneling constructions because of its high efficiency and low disturbance on structures above ground. It is critically significant to predict the thrust acting on TBMs under different geological conditions for both the design of power system and the control of tunneling process. The interaction between the cutterhead and the ground is the core of excavation, through which geological conditions determine the thrust re-quirement combined with operating status and structural characteristics. This paper conducted a mechanical decoupling analysis to obtain a basic expression of the cutterhead-ground interactive stress. Then more engineering factors(such as cutterhead topological structure, underground overburden, thrusts on other parts, etc.) were further considered to establish a predicting model for the total thrust acting on a machine during tunneling. Combined with three subway projects under different geological conditions in China, the model was verified and used to analyze how geological, operating and structural parameters influence the acting thrust.