In this paper,the non-harmonic resonance of Bernoulli viscoelastic beams,Kirchhoff viscoelastic plates,Timoshenko viscoelastic beams,and Mindlin viscoelastic plates subjected to time-dependent exponentially decreasing...In this paper,the non-harmonic resonance of Bernoulli viscoelastic beams,Kirchhoff viscoelastic plates,Timoshenko viscoelastic beams,and Mindlin viscoelastic plates subjected to time-dependent exponentially decreasing transverse distributed load is investigated for the first time.The constitutive equations are expressed utilizing Boltzmann integral law with a constant bulk modulus.The displacement vector is approximated by employing the separation of variables method.The Laplace transformation is used to transfer equations from the time domain to the Laplace domain and vice versa.The novel point of the proposed method is to express,prove and calculate the critical time in which the displacement will be several times the displacement at time zero.In addition,this new method calculates the maximum deflection at the critical time,explicitly and exactly,without any need to follow the time-displacement curve with a low computational cost.Additionally,the proposed method introduces the critical range of time so that the responses are greater than the responses at time zero.展开更多
文摘In this paper,the non-harmonic resonance of Bernoulli viscoelastic beams,Kirchhoff viscoelastic plates,Timoshenko viscoelastic beams,and Mindlin viscoelastic plates subjected to time-dependent exponentially decreasing transverse distributed load is investigated for the first time.The constitutive equations are expressed utilizing Boltzmann integral law with a constant bulk modulus.The displacement vector is approximated by employing the separation of variables method.The Laplace transformation is used to transfer equations from the time domain to the Laplace domain and vice versa.The novel point of the proposed method is to express,prove and calculate the critical time in which the displacement will be several times the displacement at time zero.In addition,this new method calculates the maximum deflection at the critical time,explicitly and exactly,without any need to follow the time-displacement curve with a low computational cost.Additionally,the proposed method introduces the critical range of time so that the responses are greater than the responses at time zero.