Orthogonal time frequency space(OTFS)modulation has been proven to be superior to traditional orthogonal frequency division multiplexing(OFDM)systems in high-speed communication scenarios.However,the existing channel ...Orthogonal time frequency space(OTFS)modulation has been proven to be superior to traditional orthogonal frequency division multiplexing(OFDM)systems in high-speed communication scenarios.However,the existing channel estimation schemes may results in poor peak to average power ratio(PAPR)performance of OTFS system or low spectrum efficiency.Hence,in this paper,we propose a low PAPR channel estimation scheme with high spectrum efficiency.Specifically,we design a multiple scattered pilot pattern,where multiple low power pilot symbols are superimposed with data symbols in delay-Doppler domain.Furthermore,we propose the placement rules for pilot symbols,which can guarantee the low PAPR.Moreover,the data aided iterative channel estimation was invoked,where joint channel estimation is proposed by exploiting multiple independent received signals instead of only one received signal in the existing scheme,which can mitigate the interference imposed by data symbols for channel estimation.Simulation results shows that the proposed multiple scattered pilot aided channel estimation scheme can significantly reduce the PAPR while keeping the high spectrum efficiency.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler ...A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.展开更多
Cellular vehicle-to-everything(C-V2X) communications is regarded as a promising and feasible solution for 5G-enabled vehicular communications and networking. In this paper, we investigate the pilot design and channel ...Cellular vehicle-to-everything(C-V2X) communications is regarded as a promising and feasible solution for 5G-enabled vehicular communications and networking. In this paper, we investigate the pilot design and channel estimation problem in MIMO-OFDM-based C-V2X systems with severe co-channel interference due to spectrum reusing among different V2X communication links. By using zero-correlation zone(ZCZ) sequences, we provide an interference-free pilot design scheme and a corresponding time-domain(TD) correlation-based channel estimation(TD-CCE) method. We employ the ZCZ sequences from the same family set to be designed as the TD pilot symbols and guarantee the pilot sequeneces for neighboring V2X communication links are code-division multiplexing(CDM). The co-channel pilot interference of the deisgned pilot symbols can be effectively eliminated by exploiting the provided TD-CCE method. Simulation results indicate that the accuracy of channel estimation can be effectively improved by the proposed scheme, whose performance is close to that of the non-interference situation.展开更多
Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot...Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot symbols for channel estimation, introduces overhead and it is desirable to keep the number of pilot symbols as minimum as possible. This paper introduces a new tight bound for the number of pilots in channel estimation using adaptive scheme in OFDM systems. We calculate the minimum number of necessary pilots using two approaches. The first approach for the number of pilots is obtained based on Doppler frequency shift estimation and the second approach is acquired based on channel length estimation using second order statistics of received signal. Finally we obtain the tight bound for the number of pilots using attained values.展开更多
The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement met...The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.展开更多
In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data....In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data. To estimate channel in time or frequency some pilot must be used. Number of these pilots and deployment of them is very important for proper estimation in different channel with varying time and frequency. Carrier sense multiple access (CSMA) and hybrid multiple access protocol are taken into consideration in MAC sub-layer. Multilayered perceptions neural network with backpropagation (BP) learning channel estimator algorithm with different pilot deployment compare to classic algorithm in for channel estimating. Simulation results show the proposed neural network estimation decreases bit error rate and therefore network throughput increases.展开更多
Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me...Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.展开更多
In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge...In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge that is not easily obtained. Therefore, the pilot tones have to be close enough to fulfill the sampling theorem. In this case the statistical knowledge of the channel is not required to reconstruct correctly the channel impulse response (CIR). This paper explores the optimal placement and number of pilot symbols, we investigate optimal training sequences in OFDM systems and we analyze the number of pilot symbols required to fulfill the sampling theorem. Using a general model for a multipath slowly fading channel, the approach is based on the LS as a criterion of channel estimation while the channel interpolation is done using the piecewise-constant interpolation compromising between complexity and performance. Simulation results demonstrate the good performance of our approach.展开更多
Channel estimation using pilot is common used in OFDM system.The pilot is usually time division multiplexed with the informative sequence.One of the main drawbacks is bandwidth losing.In this paper,a new method was pr...Channel estimation using pilot is common used in OFDM system.The pilot is usually time division multiplexed with the informative sequence.One of the main drawbacks is bandwidth losing.In this paper,a new method was proposed to perform channel estimation in OFDM system.The pilot is arithmetically added to the output of OFDM modulator.Receiver uses the hidden pilot to get an accurate estimation of the channel.Then pilot is removed after channel estimation.The Cramer-Rao lower bound for this method was deprived.The performance of the algorithm is then shown.Compared with traditional methods,the proposed algorithm increases the bandwidth efficiency dramatically.展开更多
This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean squar...This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.展开更多
Signal-to-Interference Ratio(SIR) is a very important metric of communication link quality. For wireless cellular systems, several control mechanisms, such as power control mechanisms, rate control mechanisms, and all...Signal-to-Interference Ratio(SIR) is a very important metric of communication link quality. For wireless cellular systems, several control mechanisms, such as power control mechanisms, rate control mechanisms, and allocation of radio resource, are based on SIR estimation.In previous researches, most of researchers concentrated on WCDMA systems, in which pilot symbol is time-multiplexed with data symbol; the method developed in this case is not feasible for cdma2000 systems where pilot symbol is code-multiplexed with data symbol. This paper first develops the SIR estimators based on the reverse pilot channel and then derives the approximate analytic expression for its Mean Squared Error (MSE) function, the accuracy of which is validated through simulation. It is shown that the MSE of the new SIR estimator is significantly smaller than that of other widely used SIR estimators, especially in low SIR case. Finally, the estimate quality of the proposed method is further improved by long-termly averaging the sample interference.展开更多
Orthogonal Frequency Division Multiplexing(OFDM)is very suitable for high data rate transmission in wide band wireless channel for the excellent capability to mitigate the frequency selective fading and Inter-Symbol I...Orthogonal Frequency Division Multiplexing(OFDM)is very suitable for high data rate transmission in wide band wireless channel for the excellent capability to mitigate the frequency selective fading and Inter-Symbol Interference(ISI).In WiMAX system,Orthogonal Frequency Division Multiple Access(OFDMA)is adopted as the basic multiple access scheme,and different pilot patterns has been defined for both uplink and downlink channels.Pilot pattern should be changed,especially when Multiple Input Multiple Output(MIMO)technique is combined with OFDMA,in order to support multiple antennas.There are five pilot patterns in the WiMAX-MIMO-OFDMA system,namely:Downlink-Partially Used Sub-Channel(DL-PUSC),Downlink-Fully Used Sub-Channel(DL-FUSC),Downlink-Optional Fully Used Sub-Channel(DL-OFUSC),Uplink-Partially Used Sub-Channel(UL-PUSC)and Uplink-Optional Partially Used Sub-Channel(UL-OPUSC).Moreover,by analyzing the simulation results of time domain Least Square(LS),frequency domain LS,and Fast Fourier Transform(FFT)-based channel estimation algorithms,the best pilot pattern can be found.Based on the simulation comparison of several channel estimation methods in the WiMAX-MIMO-OFDMA system presented in this article,the best channel estimation for each pilot pattern is concluded.展开更多
针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频...针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。展开更多
基金supported by National Natural Science Foundation of China(No.61871452)。
文摘Orthogonal time frequency space(OTFS)modulation has been proven to be superior to traditional orthogonal frequency division multiplexing(OFDM)systems in high-speed communication scenarios.However,the existing channel estimation schemes may results in poor peak to average power ratio(PAPR)performance of OTFS system or low spectrum efficiency.Hence,in this paper,we propose a low PAPR channel estimation scheme with high spectrum efficiency.Specifically,we design a multiple scattered pilot pattern,where multiple low power pilot symbols are superimposed with data symbols in delay-Doppler domain.Furthermore,we propose the placement rules for pilot symbols,which can guarantee the low PAPR.Moreover,the data aided iterative channel estimation was invoked,where joint channel estimation is proposed by exploiting multiple independent received signals instead of only one received signal in the existing scheme,which can mitigate the interference imposed by data symbols for channel estimation.Simulation results shows that the proposed multiple scattered pilot aided channel estimation scheme can significantly reduce the PAPR while keeping the high spectrum efficiency.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA01Z288)the National Natural Science Foundation of China (60702057)+2 种基金the National Science Fund for Distinguished Young Scholars (60725105)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the Fundamental Research Projects,Xidian University (JY10000901030)
文摘A hybrid pilots assisted channel estimation algorithm for multiple input multiple output(MIMO) orthogonal frequency division multiplexing(OFDM) systems under low signal-to-noise ratio(SNR) and arbitrary Doppler spread scenarios is proposed.Motivated by the dissatisfactory performance of the optimal pilots(OPs) designed under static channels over multiple OFDM symbols imposed by fast fading channels,the proposed scheme first assumes that the virtual pilot tones superimposed at data locations over specific subcarriers are transmitted from all antennas,then the virtual received pilot signals at the corresponding locations can be obtained by making full use of the time and frequency domain correlations of the frequency responses of the time varying dispersive fading channels and the received signals at pilot subcarriers,finally the channel parameters are derived from the combination of the real and virtual received pilot signals over one OFDM symbol based on least square(LS) criterion.Simulation results illustrate that the proposed method is insensitive to Doppler spread and can effectively ameliorate the mean square error(MSE) floor inherent to the previous method,meanwhile its performance outmatches that of OPs at low SNR region under static channels.
文摘Cellular vehicle-to-everything(C-V2X) communications is regarded as a promising and feasible solution for 5G-enabled vehicular communications and networking. In this paper, we investigate the pilot design and channel estimation problem in MIMO-OFDM-based C-V2X systems with severe co-channel interference due to spectrum reusing among different V2X communication links. By using zero-correlation zone(ZCZ) sequences, we provide an interference-free pilot design scheme and a corresponding time-domain(TD) correlation-based channel estimation(TD-CCE) method. We employ the ZCZ sequences from the same family set to be designed as the TD pilot symbols and guarantee the pilot sequeneces for neighboring V2X communication links are code-division multiplexing(CDM). The co-channel pilot interference of the deisgned pilot symbols can be effectively eliminated by exploiting the provided TD-CCE method. Simulation results indicate that the accuracy of channel estimation can be effectively improved by the proposed scheme, whose performance is close to that of the non-interference situation.
文摘Coherent detection in OFDM systems requires accurate channel state information (CSI) at the receiver. Channel estimation based on pilot-symbol-assisted transmissions provides a reliable way to obtain CSI. Use of pilot symbols for channel estimation, introduces overhead and it is desirable to keep the number of pilot symbols as minimum as possible. This paper introduces a new tight bound for the number of pilots in channel estimation using adaptive scheme in OFDM systems. We calculate the minimum number of necessary pilots using two approaches. The first approach for the number of pilots is obtained based on Doppler frequency shift estimation and the second approach is acquired based on channel length estimation using second order statistics of received signal. Finally we obtain the tight bound for the number of pilots using attained values.
文摘The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.
文摘In this paper pilot based channel estimation is being considered for broadband power line communication (BPLC) networks witch used orthogonal frequency division multiplexing (OFDM) in order to transmit high rate data. To estimate channel in time or frequency some pilot must be used. Number of these pilots and deployment of them is very important for proper estimation in different channel with varying time and frequency. Carrier sense multiple access (CSMA) and hybrid multiple access protocol are taken into consideration in MAC sub-layer. Multilayered perceptions neural network with backpropagation (BP) learning channel estimator algorithm with different pilot deployment compare to classic algorithm in for channel estimating. Simulation results show the proposed neural network estimation decreases bit error rate and therefore network throughput increases.
文摘Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.
文摘In wireless orthogonal frequency division multiplexing (OFDM) systems, the time-varying channel is often estimated by algorithms based on pilot symbols. Such an estimator, however, requires statistical prior knowledge that is not easily obtained. Therefore, the pilot tones have to be close enough to fulfill the sampling theorem. In this case the statistical knowledge of the channel is not required to reconstruct correctly the channel impulse response (CIR). This paper explores the optimal placement and number of pilot symbols, we investigate optimal training sequences in OFDM systems and we analyze the number of pilot symbols required to fulfill the sampling theorem. Using a general model for a multipath slowly fading channel, the approach is based on the LS as a criterion of channel estimation while the channel interpolation is done using the piecewise-constant interpolation compromising between complexity and performance. Simulation results demonstrate the good performance of our approach.
基金The National Natural Science Foundation ofChina(No.60332030)The National High Technology Research and Development Pro-gram of China(863Program)(No.2003AA123310)
文摘Channel estimation using pilot is common used in OFDM system.The pilot is usually time division multiplexed with the informative sequence.One of the main drawbacks is bandwidth losing.In this paper,a new method was proposed to perform channel estimation in OFDM system.The pilot is arithmetically added to the output of OFDM modulator.Receiver uses the hidden pilot to get an accurate estimation of the channel.Then pilot is removed after channel estimation.The Cramer-Rao lower bound for this method was deprived.The performance of the algorithm is then shown.Compared with traditional methods,the proposed algorithm increases the bandwidth efficiency dramatically.
文摘This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.
文摘Signal-to-Interference Ratio(SIR) is a very important metric of communication link quality. For wireless cellular systems, several control mechanisms, such as power control mechanisms, rate control mechanisms, and allocation of radio resource, are based on SIR estimation.In previous researches, most of researchers concentrated on WCDMA systems, in which pilot symbol is time-multiplexed with data symbol; the method developed in this case is not feasible for cdma2000 systems where pilot symbol is code-multiplexed with data symbol. This paper first develops the SIR estimators based on the reverse pilot channel and then derives the approximate analytic expression for its Mean Squared Error (MSE) function, the accuracy of which is validated through simulation. It is shown that the MSE of the new SIR estimator is significantly smaller than that of other widely used SIR estimators, especially in low SIR case. Finally, the estimate quality of the proposed method is further improved by long-termly averaging the sample interference.
文摘Orthogonal Frequency Division Multiplexing(OFDM)is very suitable for high data rate transmission in wide band wireless channel for the excellent capability to mitigate the frequency selective fading and Inter-Symbol Interference(ISI).In WiMAX system,Orthogonal Frequency Division Multiple Access(OFDMA)is adopted as the basic multiple access scheme,and different pilot patterns has been defined for both uplink and downlink channels.Pilot pattern should be changed,especially when Multiple Input Multiple Output(MIMO)technique is combined with OFDMA,in order to support multiple antennas.There are five pilot patterns in the WiMAX-MIMO-OFDMA system,namely:Downlink-Partially Used Sub-Channel(DL-PUSC),Downlink-Fully Used Sub-Channel(DL-FUSC),Downlink-Optional Fully Used Sub-Channel(DL-OFUSC),Uplink-Partially Used Sub-Channel(UL-PUSC)and Uplink-Optional Partially Used Sub-Channel(UL-OPUSC).Moreover,by analyzing the simulation results of time domain Least Square(LS),frequency domain LS,and Fast Fourier Transform(FFT)-based channel estimation algorithms,the best pilot pattern can be found.Based on the simulation comparison of several channel estimation methods in the WiMAX-MIMO-OFDMA system presented in this article,the best channel estimation for each pilot pattern is concluded.
文摘针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。