期刊文献+
共找到1,530篇文章
< 1 2 77 >
每页显示 20 50 100
Heterogeneous information phase space reconstruction and stability prediction of filling body–surrounding rock combination
1
作者 Dapeng Chen Shenghua Yin +5 位作者 Weiguo Long Rongfu Yan Yufei Zhang Zepeng Yan Leiming Wang Wei Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1500-1511,共12页
Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body... Traditional research believes that the filling body can effectively control stress concentration while ignoring the problems of unknown stability and the complex and changeable stress distribution of the filling body–surrounding rock combination under high-stress conditions.Current monitoring data processing methods cannot fully consider the complexity of monitoring objects,the diversity of monitoring methods,and the dynamics of monitoring data.To solve this problem,this paper proposes a phase space reconstruction and stability prediction method to process heterogeneous information of backfill–surrounding rock combinations.The three-dimensional monitoring system of a large-area filling body–surrounding rock combination in Longshou Mine was constructed by using drilling stress,multipoint displacement meter,and inclinometer.Varied information,such as the stress and displacement of the filling body–surrounding rock combination,was continuously obtained.Combined with the average mutual information method and the false nearest neighbor point method,the phase space of the heterogeneous information of the filling body–surrounding rock combination was then constructed.In this paper,the distance between the phase point and its nearest point was used as the index evaluation distance to evaluate the stability of the filling body–surrounding rock combination.The evaluated distances(ED)revealed a high sensitivity to the stability of the filling body–surrounding rock combination.The new method was then applied to calculate the time series of historically ED for 12 measuring points located at Longshou Mine.The moments of mutation in these time series were at least 3 months ahead of the roadway return dates.In the ED prediction experiments,the autoregressive integrated moving average model showed a higher prediction accuracy than the deep learning models(long short-term memory and Transformer).Furthermore,the root-mean-square error distribution of the prediction results peaked at 0.26,thus outperforming the no-prediction method in 70%of the cases. 展开更多
关键词 deep mining filling body–surrounding rock combination phase space reconstruction multiple time series stability prediction
下载PDF
Sensitivity analysis of factors affecting gravity dam anti-sliding stability along a foundation surface using Sobol method
2
作者 Bo Xu Shi-da Wang 《Water Science and Engineering》 EI CAS CSCD 2023年第4期399-407,共9页
The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams.In this study,a sensitivity analysis framework was proposed for investigating the factors affecti... The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams.In this study,a sensitivity analysis framework was proposed for investigating the factors affecting gravity dam anti-sliding stability along the foundation surface.According to the design specifications,the loads and factors affecting the stability of a gravity dam were comprehensively selected.Afterwards,the sensitivity of the factors was preliminarily analyzed using the Sobol method with Latin hypercube sampling.Then,the results of the sensitivity analysis were verified with those obtained using the Garson method.Finally,the effects of different sampling methods,probability distribution types of factor samples,and ranges of factor values on the analysis results were evaluated.A case study of a typical gravity dam in Yunnan Province of China showed that the dominant factors affecting the gravity dam anti-sliding stability were the anti-shear cohesion,upstream and downstream water levels,anti-shear friction coefficient,uplift pressure reduction coefficient,concrete density,and silt height.Choice of sampling methods showed no significant effect,but the probability distribution type and the range of factor values greatly affected the analysis results.Therefore,these two elements should be sufficiently considered to improve the reliability of the dam anti-sliding stability analysis. 展开更多
关键词 Gravity dam anti-sliding stability Sensitivity analysis Sobol method Latin hypercube sampling
下载PDF
Metaheuristic Optimization with Deep Learning Enabled Smart Grid Stability Prediction
3
作者 Afrah Al-Bossly 《Computers, Materials & Continua》 SCIE EI 2023年第6期6395-6408,共14页
Due to the drastic increase in global population as well as economy,electricity demand becomes considerably high.The recently developed smart grid(SG)technology has the ability to minimize power loss at the time of po... Due to the drastic increase in global population as well as economy,electricity demand becomes considerably high.The recently developed smart grid(SG)technology has the ability to minimize power loss at the time of power distribution.Machine learning(ML)and deep learning(DL)models can be effectually developed for the design of SG stability techniques.This article introduces a new Social Spider Optimization with Deep Learning Enabled Statistical Analysis for Smart Grid Stability(SSODLSA-SGS)pre-diction model.Primarily,class imbalance data handling process is performed using Synthetic minority oversampling technique(SMOTE)technique.The SSODLSA-SGS model involves two stages of pre-processing namely data nor-malization and transformation.Besides,the SSODLSA-SGS model derives a deep belief-back propagation neural network(DBN-BN)model for the pre-diction of SG stability.Finally,social spider optimization(SSO)algorithm can be applied for determining the optimal hyperparameter values of the DBN-BN model.The design of SSO algorithm helps to appropriately modify the hyperparameter values of the DBN-BN model.A series of simulation analyses are carried out to highlight the enhanced outcomes of the SSODLSA-SGS model.The extensive comparative study reported the enhanced performance of the SSODLSA-SGS algorithm over the other recent techniques interms of several measures. 展开更多
关键词 Smart grids stability prediction deep learning statistical analysis social spider optimization
下载PDF
Interval finite element method and its application on anti-slide stability analysis 被引量:3
4
作者 邵国建 苏静波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第4期521-529,共9页
The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on... The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on the ideas of the paper, the formulas of sub-interval perturbed finite element method based on the elements are given. The sub-interval amount is discussed and the approximate computation formula is given. At the same time, the computational precision is discussed and some measures of improving computational efficiency are given. Finally, based on sub-interval perturbed finite element method and anti-slide stability analysis method, the formula for computing the bounds of stability factor is given. It provides a basis for estimating and evaluating reasonably anti-slide stability of structures. 展开更多
关键词 interval correlation interval extension computational precision interval finite element method anti-slide stability
下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:4
5
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction Long short-term memory deep learning Geo-Studio software Machine learning model
下载PDF
Application of strength reduction method to dynamic anti-sliding stability analysis of high gravity dam with complex dam foundation 被引量:3
6
作者 Deng-hong CHEN Cheng-bin DU 《Water Science and Engineering》 EI CAS 2011年第2期212-224,共13页
Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct... Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible. 展开更多
关键词 dynamic anti-sliding stability complex dam foundation dynamic strength reduction method instability criteria elasto-plastie model dynamic time history analysis gravity dam
下载PDF
Non-Fullerene-Based Inverted Organic Photovoltaic Device with Long-Term Stability
7
作者 Do Hui Kim Febrian T.A.Wibowo +4 位作者 Dongchan Lee Narra V.Krishna Sujung Park Shinuk Cho Sung-Yeon Jang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期214-221,共8页
In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.... In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively. 展开更多
关键词 deep trap inverted structure long-term stability organic photovoltaic power conversion efficiency
下载PDF
Analysis of mechanical behavior of soft rocks and stability control in deep tunnels 被引量:5
8
作者 Hui Zhou Chuanqing Zhang +2 位作者 Zhen Li Dawei Hu Jing Hou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第3期219-226,共8页
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed wit... Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~ 展开更多
关键词 deep tunnel Soft rock Water-weakening effect Large deformation stability
下载PDF
Intelligent Smart Grid Stability Predictive Model for Cyber-Physical Energy Systems
9
作者 Ashit Kumar Dutta Manal Al Faraj +2 位作者 Yasser Albagory Mohammad zeid M Alzamil Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1219-1231,共13页
A cyber physical energy system(CPES)involves a combination of pro-cessing,network,and physical processes.The smart grid plays a vital role in the CPES model where information technology(IT)can be related to the physic... A cyber physical energy system(CPES)involves a combination of pro-cessing,network,and physical processes.The smart grid plays a vital role in the CPES model where information technology(IT)can be related to the physical system.At the same time,the machine learning(ML)modelsfind useful for the smart grids integrated into the CPES for effective decision making.Also,the smart grids using ML and deep learning(DL)models are anticipated to lessen the requirement of placing many power plants for electricity utilization.In this aspect,this study designs optimal multi-head attention based bidirectional long short term memory(OMHA-MBLSTM)technique for smart grid stability predic-tion in CPES.The proposed OMHA-MBLSTM technique involves three subpro-cesses such as pre-processing,prediction,and hyperparameter optimization.The OMHA-MBLSTM technique employs min-max normalization as a pre-proces-sing step.Besides,the MBLSTM model is applied for the prediction of stability level of the smart grids in CPES.At the same time,the moth swarm algorithm(MHA)is utilized for optimally modifying the hyperparameters involved in the MBLSTM model.To ensure the enhanced outcomes of the OMHA-MBLSTM technique,a series of simulations were carried out and the results are inspected under several aspects.The experimental results pointed out the better outcomes of the OMHA-MBLSTM technique over the recent models. 展开更多
关键词 stability prediction smart grid cyber physical energy systems deep learning data analytics moth swarm algorithm
下载PDF
Stability control of a deep shaft insert 被引量:4
10
作者 LI Guofeng 《Mining Science and Technology》 EI CAS 2010年第4期491-498,共8页
The deterioration of a deep shaft insert at the Xing'an Coal Mine was analyzed by studying the physical and mechanical properties of the rock located at key positions relative to the shaft. Factors that influence ... The deterioration of a deep shaft insert at the Xing'an Coal Mine was analyzed by studying the physical and mechanical properties of the rock located at key positions relative to the shaft. Factors that influence shaft stability were obtained. The numerical simulation program FLAC3D was used to simulate the destruction of the deep shaft insert. Two different support methods were analyzed by simulation. The simulations demonstrate that a single stiffness support is inappropriate for this shaft insert. The appropriate support method is an integrated coupling method of rigid and flexible supports. The flexible support is applied first and then the rigid support is second. Engineering practice in the Xing'an Coal Mine shows that this technology can effectively control deep-shaft insert deterioration. This support approach provides an important direction for future project design and construction, as well. 展开更多
关键词 稳定性控制 深井 物理力学性能 FLAC3D 数值模拟 影响因素 仿真结果 深竖井
下载PDF
Frictional stability of Longmaxi shale gouges and its implication for deep seismic potential in the southeastern Sichuan Basin 被引量:3
11
作者 Fengshou Zhang Li Cui +2 位作者 Mengke An Derek Elsworth Changrong He 《Deep Underground Science and Engineering》 2022年第1期3-14,共12页
Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper exp... Microearthquakes accompanying shale gas recovery highlight the importance of exploring the frictional and stability properties of shale gouges.Aiming to reveal the influencing factors on fault stability,this paper explores the impact of mineral compositions,effective stress and temperature on the frictional stability of Longmaxi shale gouges in deep reservoirs located in the Luzhou area,southeastern Sichuan Basin.Eleven shear experiments were conducted to define the frictional strength and stability of five shale gouges.The specific experimental conditions were as follows:temperatures:90–270°C;a confining stress:95 MPa;and pore fluid pressures:25–55 MPa.The results show that all five shale gouges generally display high frictional strength with friction coefficients ranging from 0.60 to 0.70 at the aforementioned experiment condition of pressures,and temperatures.Frictional stability is significantly affected by temperature and mineral compositions,but is insensitive to variation in pore fluid pressures.Fault instability is enhanced at higher temperatures(especially at>200°C)and with higher tectosilicate/carbonate contents.The results demonstrate that the combined effect of mineral composition and temperature is particularly important for induced seismicity during hydraulic fracturing in deep shale reservoirs. 展开更多
关键词 deep shale reservoir hydraulic fracturing hydrothermal condition induced seismicity mineral composition shale fault stability
下载PDF
Stability control of gate groups in deep wells 被引量:8
12
作者 GUO Zhi-biao GUO Ping-ye +1 位作者 HUANG Mao-hong LIU Yin-gen 《Mining Science and Technology》 EI CAS 2009年第2期155-160,共6页
In order to study stability control methods for a deep gate group under complex stresses,we conducted field investigations and analyses of reasons for damage in the Xuzhou mining district.Three reasons are proposed:de... In order to study stability control methods for a deep gate group under complex stresses,we conducted field investigations and analyses of reasons for damage in the Xuzhou mining district.Three reasons are proposed:deep high stress,improper roadway layout and support technology.The stability control countermeasures of the gate group consist of an intensive design technology and responding bolt-mesh-anchor truss support technology.Our research method has been applied at the -1000 m level gate group in Qishan Coal Mine.Suitable countermeasures have been tested by field monitoring. 展开更多
关键词 稳定控制 深水井 群体 闸门 支护技术 徐州矿区 巷道布置 高应力
下载PDF
Stability influence factors analysis and construction of a deep beam anchorage structure in roadway roof 被引量:8
13
作者 Xie Shengrong Gao Mingming +4 位作者 Chen Dongdong Sun Yanding Pan Hao Su Hai Lan Shizhong 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期445-451,共7页
Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support. Stability and other factors that influence deep beam structures are stu... Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support. Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements. A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China. The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion. It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing. The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlabòand FLAC3D^(TM) software, and practical support parameters of the S1203 return airway roof are determined.According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively. The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof. 展开更多
关键词 横梁结构 稳定性 房顶 影响因素 抛锚 车道 机械计算 数字分析
下载PDF
Walking Stability Control Method for Biped Robot on Uneven Ground Based on Deep Q-Network
14
作者 Baoling Han Yuting Zhao Qingsheng Luo 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期598-605,共8页
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ... A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved. 展开更多
关键词 deep Q-network (DQN) BIPED robot uneven ground WALKING stability gait control
下载PDF
THEORETICAL ANALYSIS OF THE STABILITY OF A DEEP ROADWAY 被引量:1
15
作者 付国彬 《Journal of China University of Mining and Technology》 1995年第1期58-65,共8页
In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula fo... In this paper the thickness of a broken zone, a state parameter of roadway surrounding rock, is used as the index to evaluate the stabi1ity of surrounding rock of a deep roadway. The paper gives a theoretic formula for calculating the thickness of the broken zone. The author points out that not only the ultimate strength of rockmass but its residual strength and strain-softening level all have a great influence on the stability of surrounding rock of a deep roadway. The paper’s results show that to reinforce surrounding rock, raise its residual strength and lower its strain-softening level should be taken as a basic requirement for supports of a deep roadway. In addition, the research also indicates that it is impossible for roadway supports to change surrounding rock states of a deep roadway, so it is certain for them to work in a broken state. For this reason, a sufficient yieldable quantity is necessary for roadway supports used in deep mining. 展开更多
关键词 深井巷道 支护技术 理论分析 稳定性 断裂层 矿井
下载PDF
Numerical analysis on stability of surrounding rock mass around deep roadway 被引量:1
16
作者 SU Cai-quan 《Journal of Coal Science & Engineering(China)》 2011年第4期377-381,共5页
关键词 深部巷道 岩体稳定性 数值分析 围岩强度 应变软化 承重结构 数值模拟 本构模型
下载PDF
Water Wave Optimization with Deep Learning Driven Smart Grid Stability Prediction
17
作者 Anwer Mustafa Hilal Aisha Hassan Abdalla Hashim +4 位作者 Heba G.Mohamed Mohammad Alamgeer Mohamed K.Nour Anas Abdelrahman Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2022年第12期6019-6035,共17页
Smart Grid(SG)technologies enable the acquisition of huge volumes of high dimension and multi-class data related to electric power grid operations through the integration of advanced metering infrastructures,control s... Smart Grid(SG)technologies enable the acquisition of huge volumes of high dimension and multi-class data related to electric power grid operations through the integration of advanced metering infrastructures,control systems,and communication technologies.In SGs,user demand data is gathered and examined over the present supply criteria whereas the expenses are then informed to the clients so that they can decide about electricity consumption.Since the entire procedure is valued on the basis of time,it is essential to perform adaptive estimation of the SG’s stability.Recent advancements inMachine Learning(ML)andDeep Learning(DL)models enable the designing of effective stability prediction models in SGs.In this background,the current study introduces a novel Water Wave Optimization with Optimal Deep Learning Driven Smart Grid Stability Prediction(WWOODL-SGSP)model.The aim of the presented WWOODL-SGSP model is to predict the stability level of SGs in a proficient manner.To attain this,the proposed WWOODL-SGSP model initially applies normalization process to scale the data to a uniform level.Then,WWO algorithm is applied to choose an optimal subset of features from the pre-processed data.Next,Deep Belief Network(DBN)model is followed to predict the stability level of SGs.Finally,Slime Mold Algorithm(SMA)is exploited to fine tune the hyperparameters involved in DBN model.In order to validate the enhanced performance of the proposedWWOODL-SGSP model,a wide range of experimental analyses was performed.The simulation results confirmthe enhanced predictive results of WWOODL-SGSP model over other recent approaches. 展开更多
关键词 Smart grid stability prediction deep learning energy systems machine learning metaheursitics
下载PDF
Study on the Submarine Slope Stability of the Deep Channel in the Caofeidian Harbor
18
作者 CHU Hongxian FANG Zhonghua +2 位作者 GAO Xiaohui SHI Huijie FENG Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第1期392-393,共2页
Objective The greatest advantage of the Caofeidian Harbor is its deep channel facing the Bohai Bay. The deep channel is a natural port hub for shipping of the Caofeidian Habor. The construction of the Caofeidian Harb... Objective The greatest advantage of the Caofeidian Harbor is its deep channel facing the Bohai Bay. The deep channel is a natural port hub for shipping of the Caofeidian Habor. The construction of the Caofeidian Harbor has impacted the hydrodynamic environment and the sediments movement, which has attracted much attention about the geomorphic evolution, slope stability and the evolution trend after submarine slope destruction. Insight from this study might be significant for the future development of the Caofeidian Habor, including planning, operation and maintenance. 展开更多
关键词 Study on the Submarine Slope stability of the deep Channel in the Caofeidian Harbor deep
下载PDF
A Comparative Study of Stability of Extra Virgin Olive Oil, Virgin Coconut Oil and Grape Seed Oil against Domestic Deep Frying
19
作者 Nyam Kar Lin Chew Kin Ken 《Journal of Food Science and Engineering》 2014年第2期71-81,共11页
关键词 葡萄籽油 稳定性 橄榄油 椰子油 油炸 国内 脂肪酸含量 实验过程
下载PDF
Experimental study on stability control technology of surrounding rock of deep roadways in coal mine
20
作者 Luo Yong Yuan Liang Yang Yang 《Engineering Sciences》 EI 2014年第2期12-21,共10页
In order to solve effectively the problems of deep mining with safety and high efficiency,the multiple factors influencing the stability of deep rock roadway and technical problems are analyzed in the light of the sev... In order to solve effectively the problems of deep mining with safety and high efficiency,the multiple factors influencing the stability of deep rock roadway and technical problems are analyzed in the light of the severe situation of effective mining for deep coal resource,and the stability control methods for deep rock roadway are provided,which are based on the idea of combined support with separated steps and integral control of surrounding rock of deep rock roadway. The suggested methods were applied to a deep rock roadway with-648 m depth in Gubei coal mine of Huainan area. The field test was carried out and the in-situ monitoring was implemented,and the support scheme was optimized and adjusted to improve the stability of the surrounding rock of the roadway based on the feedback analysis. The results showed that the stability can be improved greatly by the provided control methods for deep roadway. The present methods for stability control of deep rock roadway can be used to other deep rock roadways with the similar conditions. 展开更多
关键词 围岩稳定性 深部巷道 控制技术 现场试验 煤矿 稳定控制系统 深部开采 煤炭资源
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部