The depth is important for ore finding in Jiaodong gold deposit. However, many geologists are still discussing how to confirm the depth for the tectonic and metallogenesis formation. The authors of this paper propose ...The depth is important for ore finding in Jiaodong gold deposit. However, many geologists are still discussing how to confirm the depth for the tectonic and metallogenesis formation. The authors of this paper propose a new method-the correction of metallogenic depth via its structure to calculate the depth. This method, based on the crust rock in a solid stress state, emphasizes the elastic pattern rather than the static fluid pattern. In addition, this method is more appropriate to the actual situation in the crust than the method of weight/special weight. The authors of this paper illustrating, with the Jiaodong gold deposit as an example, the metallogenic depth correction via structure conclude that the depth of the most deposits, lower than 4-6 km, is often 2.5 km. Therefore, the authors suggest that there exists a second enrichment belt and that ore resources are more potential at the belt of Jiaodong area. These results have been demonstrated by years of exploration.展开更多
Based on analysis of field survey, drilling and seismic data, the formation and evolution process of Deyang-Anyue erosion rift trough in Sichuan Basin was reconstructed, and exploration areas were divided and evaluate...Based on analysis of field survey, drilling and seismic data, the formation and evolution process of Deyang-Anyue erosion rift trough in Sichuan Basin was reconstructed, and exploration areas were divided and evaluated. The results show that:(1) Dengying Formation in and around Deyang-Anyue erosion rift trough varies widely in sedimentary characteristics. The Dengying Formation in the northern part of the erosion rift trough developed deep-water sediments, the Dengying Formation in the northern part of the basin varied gradually from basin to slope, platform margin, and restricted platform, and the Dengying Formation in the middle and southern parts of the trough developed carbonate platform facies.(2) Deyang-Anyue erosion rift trough is formed by extensional rift and karst erosion jointly, the north section of the erosion rift trough is mainly the product of tensile rift, while the middle and south sections are formed by erosion in multi-episodes of Tongwan period.(3) Based on the segmented origins of the erosion rift trough, Dengying Formation in and around it is divided into three exploration fields: lithologic mound and beach bodies at the northern platform margin of the basin, karst mound and beach bodies in the central platform, and karst residual mounds in the central southern trough of the basin, among them, the karst residual mounds in the central southern trough of the basin are a new frontier for natural gas exploration in the basin, and the lithologic mound and beach bodies at the northern platform margin are a new position for increasing the reserves of trillions of cubic meters of natural gas resources in the basin.展开更多
Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s...Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed.展开更多
文摘The depth is important for ore finding in Jiaodong gold deposit. However, many geologists are still discussing how to confirm the depth for the tectonic and metallogenesis formation. The authors of this paper propose a new method-the correction of metallogenic depth via its structure to calculate the depth. This method, based on the crust rock in a solid stress state, emphasizes the elastic pattern rather than the static fluid pattern. In addition, this method is more appropriate to the actual situation in the crust than the method of weight/special weight. The authors of this paper illustrating, with the Jiaodong gold deposit as an example, the metallogenic depth correction via structure conclude that the depth of the most deposits, lower than 4-6 km, is often 2.5 km. Therefore, the authors suggest that there exists a second enrichment belt and that ore resources are more potential at the belt of Jiaodong area. These results have been demonstrated by years of exploration.
基金Supported by the National Key Research and Development Program of China (2017YFC0603106)Project of Science and Technology Department of PetroChina Southwest Oil and Gas Field Company (20200301-01)。
文摘Based on analysis of field survey, drilling and seismic data, the formation and evolution process of Deyang-Anyue erosion rift trough in Sichuan Basin was reconstructed, and exploration areas were divided and evaluated. The results show that:(1) Dengying Formation in and around Deyang-Anyue erosion rift trough varies widely in sedimentary characteristics. The Dengying Formation in the northern part of the erosion rift trough developed deep-water sediments, the Dengying Formation in the northern part of the basin varied gradually from basin to slope, platform margin, and restricted platform, and the Dengying Formation in the middle and southern parts of the trough developed carbonate platform facies.(2) Deyang-Anyue erosion rift trough is formed by extensional rift and karst erosion jointly, the north section of the erosion rift trough is mainly the product of tensile rift, while the middle and south sections are formed by erosion in multi-episodes of Tongwan period.(3) Based on the segmented origins of the erosion rift trough, Dengying Formation in and around it is divided into three exploration fields: lithologic mound and beach bodies at the northern platform margin of the basin, karst mound and beach bodies in the central platform, and karst residual mounds in the central southern trough of the basin, among them, the karst residual mounds in the central southern trough of the basin are a new frontier for natural gas exploration in the basin, and the lithologic mound and beach bodies at the northern platform margin are a new position for increasing the reserves of trillions of cubic meters of natural gas resources in the basin.
基金National Natural Science Foundation of China under Grant Nos.51988101,51978613 and 52278374the Chinese Program of Introducing Talents of Discipline to University(the 111 Project,B18047)。
文摘Soil strain is the key parameter to control the elasto-plastic deformation and even the failure processes.To overcome the defect that the strain of the model soil is always smaller than that of the prototype in Iai′s generalized scaling law(GSL),a modified scaling law was proposed based on Iai′s GSL to secure the same dynamic shear strain between the centrifuge model and the prototype by modulating the amplitude and frequency of the input motion at the base.A suite of dynamic centrifuge model tests of dry sand level ground was conducted with the same overall scaling factor(λ=200)under different centrifugal accelerations by using the technique of“modeling of models”to validate the modified GSL.The test results show that the modified GSL could achieve the same dynamic strain in model as that of the prototype,leading to better modeling for geotechnical problems where dynamic strain dominates the response or failure of soils.Finally,the applicability of the proposed scaling law and possible constraints on geometry scaling due to the capability limits of existing centrifuge shaking tables are discussed.