In-situ DRIFTS was used to study the deep oxidation of propane, a side reaction during propane oxidative dehydrogenation to propene. Strong adsorption of propene was supposed to be the main reason for the deep oxidati...In-situ DRIFTS was used to study the deep oxidation of propane, a side reaction during propane oxidative dehydrogenation to propene. Strong adsorption of propene was supposed to be the main reason for the deep oxidation. It was found that gaseous oxygen in the feed and the reaction temperature had great influence on the reaction. To obtain a relative high selectivity to propene, the reaction temperature should be maintained at 150-250℃ with a proper content of gaseous oxygen in the feed for a certain catalyst and some modifiers which could weaken the adsorption of propene on the catalyst surface would be favorable.展开更多
概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模...概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.展开更多
流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的...流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.展开更多
基金supported by the National Natural Science Foundation of China (20576045)the Program for New Century Excellent Talentsin University (NCET-06-740)
文摘In-situ DRIFTS was used to study the deep oxidation of propane, a side reaction during propane oxidative dehydrogenation to propene. Strong adsorption of propene was supposed to be the main reason for the deep oxidation. It was found that gaseous oxygen in the feed and the reaction temperature had great influence on the reaction. To obtain a relative high selectivity to propene, the reaction temperature should be maintained at 150-250℃ with a proper content of gaseous oxygen in the feed for a certain catalyst and some modifiers which could weaken the adsorption of propene on the catalyst surface would be favorable.
文摘概念漂移是流数据挖掘领域中的一个重要且具有挑战性的难题.然而,目前的方法大多仅能够处理线性或简单的非线性映射,深度神经网络虽然有较强的非线性拟合能力,但在流数据挖掘任务中,每次只能在新得到的1个或一批样本上进行训练,学习模型难以实时调整以适应动态变化的数据流.为解决上述问题,将梯度提升算法的纠错思想引入含概念漂移的流数据挖掘任务之中,提出了一种基于自适应深度集成网络的概念漂移收敛方法(concept drift convergence method based on adaptive deep ensemble networks,CD_ADEN).该模型集成多个浅层神经网络作为基学习器,后序基学习器在前序基学习器输出的基础上不断纠错,具有较高的实时泛化性能.此外,由于浅层神经网络有较快的收敛速度,因此所提出的模型能够较快地从概念漂移造成的精度下降中恢复.多个数据集上的实验结果表明,所提出的CD_ADEN方法平均实时精度有明显提高,相较于对比方法,平均实时精度有1%~5%的提升,且平均序值在7种典型的对比算法中排名第一.说明所提出的方法能够对前序输出进行纠错,且学习模型能够快速地从概念漂移造成的精度下降中恢复,提升了在线学习模型的实时泛化性能.
文摘流数据作为大数据的重要形式广泛存在于实际问题中,由于流数据中数据分布变化产生概念漂移,容易导致模型的泛化性能下降,且在实际应用问题中,数据标记成本较高,难以获得强监督的信息.针对以上问题,本文提出一种基于在线深度神经网络的弱监督概念漂移检测(Weakly supervised conceptual drift detection method based on online deep neural network,WSCDD)方法.该方法设计了一种在线深度神经网络模型,采用Hedge反向传播方法在线学习网络深度,并通过设计Dropout层在模型预测时引入随机性,利用蒙特卡罗方法量化深度神经网络模型的预测不确定性,通过自适应滑动窗口技术检测弱监督环境下概念漂移的发生,并使模型适应新的概念.实验结果表明,该方法可以准确检测数据流中概念漂移的发生,在漂移发生后能够快速收敛到新的数据分布,提高了学习模型的泛化性能.