期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Deformation mechanism of roadways in deep soft rock at Hegang Xing’an Coal Mine 被引量:21
1
作者 Yang Xiaojie Pang Jiewen +4 位作者 Liu Dongming Liu Yang Tian Yihong Ma Jiao Li Shaohua 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期307-312,共6页
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ... Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock. 展开更多
关键词 deep Clay mineral engineering soft rock type Deformation mechanics mechanism
下载PDF
Deep gold mineralization features of Jiaojia metallogenic belt,Jiaodong gold Province:Based on the breakthrough of 3000 m exploration drilling 被引量:2
2
作者 Xue-feng Yu Da-peng Li +7 位作者 Jing-xiang Tian De-ping Yang Wei Shan Ke Geng Yu-xin Xiong Nai-jie Chi Peng-fei Wei Peng-rui Liu 《China Geology》 2020年第3期385-401,共17页
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ... Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation. 展开更多
关键词 Au deposit Alteration rock type Fracture zone 3000 m scientific drilling deep mineral exploration engineering Jiaojia metallogenic belt Shandong Province China
下载PDF
A novel true triaxial test system for microwave-induced fracturing of hard rocks 被引量:5
3
作者 Xia-Ting Feng Jiuyu Zhang +4 位作者 Chengxiang Yang Jun Tian Feng Lin Shiping Li Xiangxin Su 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期961-971,共11页
This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing s... This study introduces a test system for microwave-induced fracturing of hard rocks under true triaxial stress.The test system comprises a true triaxial stress loading system,an open-ended microwaveinduced fracturing system,a data acquisition system,an acoustic emission(AE)monitoring system,and an auxiliary specimen loading system.Microwave-induced surface and borehole fracturing tests under true triaxial stress were fulfilled for the first time,which overcomes the problem of microwave leakage in the coupling loading of true triaxial stress and microwave.By developing the dynamic monitoring system,the thermal response and fracture evolution were obtained during microwave irradiation.The monitoring system includes the infrared thermometry technique for monitoring rock surface temperature,the distributed optic fiber sensing technique for monitoring temperature in borehole in rock,the AE technique and two-dimensional digital speckle correlation technique for monitoring the evolution of thermal damage and the rock fracturing process.To validate the advantages of the test system and investigate the characteristics of microwave-induced fracturing of hard rocks,the study demonstrates the experimental methods and results for microwave-induced surface and borehole fracturing under true triaxial stress.The results show that thermal cracking presented intermittent characteristics(calm eactiveecalm)during microwave-induced surface and borehole fracturing of basalt.In addition,true triaxial stress can inhibit the development and distribution of thermal cracks during microwave-induced surface fracturing.When microwave-induced borehole fracturing occurs,it promotes the distribution of thermal cracks in rock,but inhibits the width of cracks.The results also prove the reliability of the test system. 展开更多
关键词 deep hard rock engineering True triaxial apparatus Microwave-induced fracturing of hard rocks Electromagnetic compatibility Dynamic monitoring Evolution of rock fracturing
下载PDF
BMRMIA:A Platform for Radiologists to Systematically Learn Automated Medical Image Analysis by Three Dimensional Medical Decision Support System
4
作者 Yankun Cao Lina Xu +5 位作者 Zhi Liu Xiaoyan Xiao Mingyu Wang Qin Li Hongji Xu Geng Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期851-863,共13页
Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theo... Contribution:This paper designs a learning and training platform that can systematically help radiologists learn automated medical image analysis technology.The platform can help radiologists master deep learning theories and medical applications such as the three-dimensional medical decision support system,and strengthen the teaching practice of deep learning related courses in hospitals,so as to help doctors better understand deep learning knowledge and improve the efficiency of auxiliary diagnosis.Background:In recent years,deep learning has been widely used in academia,industry,andmedicine.An increasing number of companies are starting to recruit a large number of professionals in the field of deep learning.Increasing numbers of colleges and universities also offer courses related to deep learning to help radiologists learn automated medical image analysis techniques.For now,however,there is no practical training platform that can help radiologists learn automated medical image analysis systematically.ApplicationDesign:The platform proposes the basic learning,model combat,business application(BMR)concept,including the learning guidance system and the assessment training system,which constitutes a closed-loop learning guidance mode of“learning-assessment-training-learning”.Findings:The survey results show that most of radiologists met their learning expectations by using this platform.The platform can help radiologists master deep learning techniques quickly,comprehensively and firmly. 展开更多
关键词 BMR deep learning three dimensional medical decision support system deep learning engineer standard
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部