期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations 被引量:1
1
作者 Muhammad Ibrahim Imran Sarwar Bajwa +3 位作者 Nadeem Sarwar Haroon Abdul Waheed Muhammad Zulkifl Hasan Muhammad Zunnurain Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第3期5301-5317,共17页
Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep lear... Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep learning approaches for capturing user and product information from a short text.However,such previously used approaches do not fairly and efficiently incorporate users’preferences and product characteristics.The proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations.To overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or not.The proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed problems.Experimental results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services. 展开更多
关键词 Neural sentiment classification user product attention deep collaborative filtering multivariate rating artificial intelligence
下载PDF
A Deep Neural Collaborative Filtering Based Service Recommendation Method with Multi-Source Data for Smart Cloud-Edge Collaboration Applications 被引量:2
2
作者 Wenmin Lin Min Zhu +4 位作者 Xinyi Zhou Ruowei Zhang Xiaoran Zhao Shigen Shen Lu Sun 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第3期897-910,共14页
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and... Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods. 展开更多
关键词 deep neural collaborative filtering multi-source data cloud-edge collaboration application stackeddenoising auto encoder multiple layer perceptron
原文传递
Weighted adaptive filtering algorithm for carrier tracking of deep space signal 被引量:8
3
作者 Song Qingping Liu Rongke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1236-1244,共9页
Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is aut... Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect. 展开更多
关键词 Adaptive algorithms Carrier tracking deep space communicationKalman filters Tracking accuracy WEIGHTED
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部