As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap...As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development.展开更多
In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth, experimental research on reactions between carbonates and water or water bearing minerals was carried out at th...In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth, experimental research on reactions between carbonates and water or water bearing minerals was carried out at the pressure of about 1 GPa and the temperature range of 800-1500℃. The reactions took place in an open and nonequilibrium state. Chromatographic analyses of the gas products indicate that in the experiments there were generated CH 4 dominated hydrocarbons, along with some CO 2 and CO. Accordingly, we think there is no essential distinction between free state water and hydroxy in the minerals in the process of hydrocarbon formation. This study indicates that reactions between carbonates and water or water bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth’s depth.展开更多
Light hydrocarbon (methane, ethane, propane, butane and CO2) test and C isotopic analysis of CO are conducted for over 100 lower-layer atmospheric samples from the East China Sea slope and the Okinawa Trough. The resu...Light hydrocarbon (methane, ethane, propane, butane and CO2) test and C isotopic analysis of CO are conducted for over 100 lower-layer atmospheric samples from the East China Sea slope and the Okinawa Trough. The results show that the lower-layer atmosphere mainly consists of CO2 and then of CH4, and the CO2 concentrations are calculated to have a high average value of 0.87 omega/10(-2) about three times that of the regional background (0-3 omega/10(-2)). The result also shows that the average value of C isotope - 20.8 x 10(-3) is given to the CO2, inferring that it is inorganic gas. Thus, for the future 's work in the Okinawa Trough, special attention should be paid to CO2 hydrate, which is very possibly an important hydrate type.展开更多
Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata thr...Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO2, CH4, H2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO2 reservoirs have been discovered. The CO2 content is up to 99%, with δ-(13)C(CO2) values ranging from-4.1‰ to-0.37‰ and -3He/-4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ-(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ-(13)C(CH4)δ-(13)C(C2H6)δ-(13)C(C3H8)δ-(13)C(C4H10). According to laboratory experiments, introducing external H2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization temperatures than the burial temperature, relatively high concentrations of Fe and Mn, positive Eu anomalies, depletion of 18 O and enrichment of radiogenic -(87)Sr. Due to CO2-rich fluids, the development of high-quality carbonate reservoirs is extended to deep strata. For example, the Well TS1 in the northern Tarim Basin revealed a high-quality Cambrian dolomite reservoir with a porosity of 9.1% at 8408 m, and the Well ZS1 C in the central Tarim Basin revealed a large petroleum reserve in a Cambrian dolomite reservoir at -6900 m. During the upward migration from deep to shallow basin strata, large volumes of supercritical CO2 may extract petroleum components from hydrocarbon source rocks or deep reservoirs and facilitate their migration to shallow reservoirs, where the petroleum accumulates with the CO2. Many reservoirs containing both supercritical CO2 and petroleum have been discovered in the Songliao, Bohaiwan, Northern Jiangsu, Pearl River Mouth and Yinggehai Basins. The components of the petroleum trapped with CO2 are dominated by low molecular weight saturated hydrocarbons.展开更多
It is important to determine the properties of the tectonics in Cambrian period for the sake of prospecting deep hydrocarbon in the near future in the southern Ordos Kratogen of North China. Authors chose the marginal...It is important to determine the properties of the tectonics in Cambrian period for the sake of prospecting deep hydrocarbon in the near future in the southern Ordos Kratogen of North China. Authors chose the marginal areas of the southern Ordos basin as the object of research, avoided the effects of both the Qinling Orogenic Belts (QOB) and Weihe River Graben (WRG) whose geological structures are too complicated. By surveying typical Cambrian outcrops and profdes in the basin edges and based on the cores of 57 wells which penetrated the Cambrian in the basin, combined with the seismic profiles, the field gammaray measuement results and the carbon isotope analysis, Authors conclude that the southern margin of the Ordos Kratogen during Cambrian was a passive continental margin which resulted from sea-floor spreading of the Ancient Qinling Ocean. Epicontinental sea carbonate sediments formed in the south Ordos continental margin during Cambrian, and were predominant as tidal flat and o61itic shoal. Both transgression-regression process and the change in palaeostructure have the obvious cyclicity. Using the junction between the late Nangao age of Qiandong epoch and the early Duyun age of Qiandong epoch as a boundary, each had a full transgression cycle at the upper and lower stages. The early cycle is characterized by high energy clastic littoral facies while the late cycle is characterized by carbonate ramp on which clear water and muddy water developed alternately changing to carbonate platform last. During the early stages, An aulacogen was formed in the middle section of the southern margin. The southern Ordos margin was uplifted and denudated by the Huaiyuan Movement which occurred from the late Furongian age to the middle Flolan age and the history of the passive continental margin ended and entering into a new tectonic cycle. The unconformity surface caused by the Huaiyuan Movement, along with its neighborhood areas where dissolved pores and cavities are developed, may be another important district for good hydrocarbon reservoirs (excluding the unconformity surface on the top of the Ordovician in the Ordos basin).展开更多
基金the National Basic Research Program of China (973 Program, 2011CB201100)‘‘Complex hydrocarbon accumulation mechanism and enrichmentregularities of deep superimposed basins in Western China’’ National Natural Science Foundation of China (U1262205) under the guidance of related department heads and experts
文摘As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development.
文摘In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth, experimental research on reactions between carbonates and water or water bearing minerals was carried out at the pressure of about 1 GPa and the temperature range of 800-1500℃. The reactions took place in an open and nonequilibrium state. Chromatographic analyses of the gas products indicate that in the experiments there were generated CH 4 dominated hydrocarbons, along with some CO 2 and CO. Accordingly, we think there is no essential distinction between free state water and hydroxy in the minerals in the process of hydrocarbon formation. This study indicates that reactions between carbonates and water or water bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth’s depth.
文摘Light hydrocarbon (methane, ethane, propane, butane and CO2) test and C isotopic analysis of CO are conducted for over 100 lower-layer atmospheric samples from the East China Sea slope and the Okinawa Trough. The results show that the lower-layer atmosphere mainly consists of CO2 and then of CH4, and the CO2 concentrations are calculated to have a high average value of 0.87 omega/10(-2) about three times that of the regional background (0-3 omega/10(-2)). The result also shows that the average value of C isotope - 20.8 x 10(-3) is given to the CO2, inferring that it is inorganic gas. Thus, for the future 's work in the Okinawa Trough, special attention should be paid to CO2 hydrate, which is very possibly an important hydrate type.
基金financially supported by the National Natural Science Foundation of China (grants No.41230312,U1663209,41372149 and 41625009)the Key Project of China National Program for Fundamental Research and Development (973 Program,grant No.2012CB214800)
文摘Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO2, CH4, H2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO2 reservoirs have been discovered. The CO2 content is up to 99%, with δ-(13)C(CO2) values ranging from-4.1‰ to-0.37‰ and -3He/-4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ-(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ-(13)C(CH4)δ-(13)C(C2H6)δ-(13)C(C3H8)δ-(13)C(C4H10). According to laboratory experiments, introducing external H2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization temperatures than the burial temperature, relatively high concentrations of Fe and Mn, positive Eu anomalies, depletion of 18 O and enrichment of radiogenic -(87)Sr. Due to CO2-rich fluids, the development of high-quality carbonate reservoirs is extended to deep strata. For example, the Well TS1 in the northern Tarim Basin revealed a high-quality Cambrian dolomite reservoir with a porosity of 9.1% at 8408 m, and the Well ZS1 C in the central Tarim Basin revealed a large petroleum reserve in a Cambrian dolomite reservoir at -6900 m. During the upward migration from deep to shallow basin strata, large volumes of supercritical CO2 may extract petroleum components from hydrocarbon source rocks or deep reservoirs and facilitate their migration to shallow reservoirs, where the petroleum accumulates with the CO2. Many reservoirs containing both supercritical CO2 and petroleum have been discovered in the Songliao, Bohaiwan, Northern Jiangsu, Pearl River Mouth and Yinggehai Basins. The components of the petroleum trapped with CO2 are dominated by low molecular weight saturated hydrocarbons.
基金supported by a grant from the special research project-Key Technologies of Exploration and Development in Marine Carbonatite for Major Oil-Gas Fields in China (Code: 2008E-0700)sponsored by the State funding and PetroChina
文摘It is important to determine the properties of the tectonics in Cambrian period for the sake of prospecting deep hydrocarbon in the near future in the southern Ordos Kratogen of North China. Authors chose the marginal areas of the southern Ordos basin as the object of research, avoided the effects of both the Qinling Orogenic Belts (QOB) and Weihe River Graben (WRG) whose geological structures are too complicated. By surveying typical Cambrian outcrops and profdes in the basin edges and based on the cores of 57 wells which penetrated the Cambrian in the basin, combined with the seismic profiles, the field gammaray measuement results and the carbon isotope analysis, Authors conclude that the southern margin of the Ordos Kratogen during Cambrian was a passive continental margin which resulted from sea-floor spreading of the Ancient Qinling Ocean. Epicontinental sea carbonate sediments formed in the south Ordos continental margin during Cambrian, and were predominant as tidal flat and o61itic shoal. Both transgression-regression process and the change in palaeostructure have the obvious cyclicity. Using the junction between the late Nangao age of Qiandong epoch and the early Duyun age of Qiandong epoch as a boundary, each had a full transgression cycle at the upper and lower stages. The early cycle is characterized by high energy clastic littoral facies while the late cycle is characterized by carbonate ramp on which clear water and muddy water developed alternately changing to carbonate platform last. During the early stages, An aulacogen was formed in the middle section of the southern margin. The southern Ordos margin was uplifted and denudated by the Huaiyuan Movement which occurred from the late Furongian age to the middle Flolan age and the history of the passive continental margin ended and entering into a new tectonic cycle. The unconformity surface caused by the Huaiyuan Movement, along with its neighborhood areas where dissolved pores and cavities are developed, may be another important district for good hydrocarbon reservoirs (excluding the unconformity surface on the top of the Ordovician in the Ordos basin).