We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetr...We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.展开更多
基金the National Natural Science Foundation of China (Grant No. 41002076 and No. 40921001)the China Geological Survey (Grant No. 1212011121275)the SinoProbe-05-07 of the Ministry of Science and Technology of China (Grant No. 05-07)
文摘We report the discovery of an in-situ natural moissanite as an inclusion in the Cr-spinel from the dunite envelope of a chromitite deposit in Luobusa ophiolite,Tibet.The moissanite occurs as a twin crystal interpenetrated by two quadrilateral signal crystals with sizes of 17 pm × 10 μm and 20 μm × 7 μm,respectively.The moissanite is green with parallel extinction.The absorption peaks in its Raman spectra are at 967-971 cm-1,787-788 cm-1,and 766 cm-1.The absorption peaks in the infrared spectra are at 696 cm-1,767 cm-1,1450 cm-1,and 1551 cm-1,which are distinctly different from the peaks for synthetic silicon carbide.Moissanites have been documented to form in ultra-high pressure,high temperature,and extremely low fO2 environments and their 13C-depleted compositions indicate a lower mantle origin.Combined with previous studies about other ultra-high pressure and highly reduced minerals in Luobusa ophiolite,the in-situ natural moissanite we found indicates a deep mantle origin of some materials in the mantle sequence of Luobusa ophiolite.Further,we proposed a transformation model to explain the transfer process of UHP materials from the deep mantle to ophiolite sequence and then to the supra-subduction zone environment.Interactions between the crown of the mantle plume and mid-ocean ridge are suggested to be the dominant mechanism.