期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Testing Analysis of Composite Ground with Grouting Piles and Deep Mixing Piles
1
作者 邵俐 刘松玉 邵信发 《Journal of Southeast University(English Edition)》 EI CAS 2001年第2期65-68,共4页
This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the ... This paper discusses a new technique to improve soft ground with grouting piles and deep mixing piles. The bearing capacity of composite ground and the stress ratio between piles and soil is discussed by means of the static test. Based on Mindlin solution and Boussinesq solution, the additional stress and settlement of the composite ground are acquired.Compared the practical value with calculation, a better calculating method is confirmed. 展开更多
关键词 grouting piles Mindlin solution Boussinesq solution deep mixing piles
下载PDF
Field testing of stiffened deep cement mixing piles under lateral cyclic loading 被引量:7
2
作者 Werasak Raongjant Meng Jing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期261-265,共5页
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject... Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity. 展开更多
关键词 stiffened deep cement mixing pile lateral capacity cyclic lateral loading energy dissipation capacity field testing
下载PDF
Bearing Behaviors of Stiffened Deep Cement Mixed Pile 被引量:1
3
作者 吴迈 赵欣 《Transactions of Tianjin University》 EI CAS 2006年第3期209-214,共6页
A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate ... A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile. Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil. Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile. Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil. The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles. In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity. Based on the findings of these experimental investigations and theoretical analysi , a practical design method is developed to predict the vertical bearing capacity of SDCM pile. 展开更多
关键词 stiffened deep cement mixed pile bearing capacity load transfer mechanism design method
下载PDF
Reliability-based settlement analysis of embankments over soft soils reinforced with T-shaped deep cement mixing piles 被引量:1
4
作者 Chana PHUTTHANANON Pornkasem JONGPRADIST +3 位作者 Daniel DIAS Xiangfeng GUO Pitthaya JAMSAWANG Julien BAROTH 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第5期638-656,共19页
This paper presents a reliability-based settlement analysis of T-shaped deep cement mixing(TDM)pile-supported embankments over soft soils.The uncertainties of the mechanical properties of the in-situ soil,pile,and emb... This paper presents a reliability-based settlement analysis of T-shaped deep cement mixing(TDM)pile-supported embankments over soft soils.The uncertainties of the mechanical properties of the in-situ soil,pile,and embankment,and the effect of the pile shape are considered simultaneously.The analyses are performed using Monte Carlo Simulations in combination with an adaptive Kriging(using adaptive sampling algorithm).Individual and system failure probabilities,in terms of the differential and maximum settlements(serviceability limit state(SLS)requirements),are considered.The reliability results for the embankments supported by TDM piles,with various shapes,are compared and discussed together with the results for conventional deep cement mixing pile-supported embankments with equivalent pile volumes.The influences of the inherent variabilities in the material properties(mean and coefficient of variation values)on the reliability of the piled embankments,are also investigated.This study shows that large TDM piles,particularly those with a shape factor of greater than 3,can enhance the reliability of the embankment in terms of SLS requirements,and even avoid unacceptable reliability levels caused by variability in the material properties. 展开更多
关键词 T-shaped deep cement mixing piles piled embankments SETTLEMENT reliability analysis soil uncertainties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部