期刊文献+
共找到2,447篇文章
< 1 2 123 >
每页显示 20 50 100
Geochemical characteristics and exploration significance of ultra-deep Sinian oil and gas from Well Tashen 5,Tarim Basin,NW China 被引量:2
1
作者 Zicheng Cao Anlai Ma +4 位作者 Qinqi Xu Quanyong Pan Kai Shang Fan Feng Yongli Liu 《Energy Geoscience》 EI 2024年第1期24-36,共13页
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ... The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs. 展开更多
关键词 Ultra-deep Sinian oil and gas oil-cracking Well Tashen 5 Tarim Basin
下载PDF
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
2
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates
3
作者 MA Yongsheng CAI Xunyu +9 位作者 LI Maowen LI Huili ZHU Dongya QIU Nansheng PANG Xiongqi ZENG Daqian KANG Zhijiang MA Anlai SHI Kaibo ZHANG Juntao 《Petroleum Exploration and Development》 SCIE 2024年第4期795-812,共18页
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d... Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved. 展开更多
关键词 deep and ultra-deep marine carbonate mechanisms of hydrocarbon accumulation reef-beach facies high-sulfur sour gas reservoirs ultra-deep fault-controlled fractured-cavity reservoir wellbore sulfur deposition fluid-solid-thermal numerical simulation
下载PDF
Characteristics and Trends of Deep Oil and Gas Research in China (1984-2024)—Research from the Perspective of CiteSpace
4
作者 Zhichao Liu Yuxin Shen 《Journal of Geoscience and Environment Protection》 2024年第10期255-276,共22页
Deep oil and gas refer to oil and gas resources buried at a significant depth below the surface. Compared with conventional oil and gas, deep oil and gas often face more complex geological conditions and technological... Deep oil and gas refer to oil and gas resources buried at a significant depth below the surface. Compared with conventional oil and gas, deep oil and gas often face more complex geological conditions and technological challenges, therefore, the development and exploitation of these oil and gas resources require advanced technology and equipment. Use bibliometrics to study academic literature. Select available data and download it in “RefWorks” format. Import the data into Cite Space 6.3.R2 software for author collaboration and keyword emergence analysis and visualization. Use Microsoft Excel 2016 software to analyze the annual publication volume, literature institutions, and disciplinary distribution of domestic and international scholarly literature. Research has found that: 1) The institution with the highest number of publications in the field of deep oil and gas in China is the China Petroleum Exploration and Development Research Institute;The author with the highest number of publications is Zhu Guangyou;The author with the highest citation frequency is Jia Chengzao;The research work in the field of deep oil and gas in China is mainly led by national level fund projects. 2) The research hot-spots of deep oil and gas in China are showing a trend of shifting from Jilin and Henan to Xinjiang and Sichuan. 3) The research on deep oil and gas fields in the Paleogene of China is mainly concentrated in Henan Province and Shandong Province. The Lower Tertiary, Cambrian and Jurassic are respectively concentrated in Dongpu Sag, Dongying Sag, Sichuan Basin, Tarim Basin in Xinjiang, the Junggar Basin and Qaidam Basin in Qinghai. The Sinian, Ordovician, Cretaceous, and Neogene systems are mainly concentrated in Sichuan, Xinjiang, and Qinghai provinces. The Permian system is mainly located in the southwest and Northwest of China. This article uses a new research perspective and methodology to systematically analyze the current situation and future development trends of deep oil and gas exploration and development in China, which is of great significance for promoting effective exploration and development of deep oil and gas resources. 展开更多
关键词 deep oil and gas CITESPACE BIBLIOMETRICS Knowledge Graph
下载PDF
A review of methane leakage from abandoned oil and gas wells:A case study in Lubbock,Texas,within the Permian Basin 被引量:2
5
作者 Stanley U.Opara Chinedu J.Okere 《Energy Geoscience》 EI 2024年第3期1-12,共12页
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o... In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells. 展开更多
关键词 Net zero carbon emissions Climate change mitigation Methane emission control Abandoned oil and gas(AOG)well Permian Basin
下载PDF
Risk assessment of oil and gas investment environment in countries along the Belt and Road Initiative 被引量:1
6
作者 Bao-Jun Tang Chang-Jing Ji +3 位作者 Yu-Xian Zheng Kang-Ning Liu Yi-Fei Ma Jun-Yu Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1429-1443,共15页
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv... With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative. 展开更多
关键词 Belt and Road Initiative oil and gas Investment Risk assessment
下载PDF
Miscibility of light oil and flue gas under thermal action 被引量:1
7
作者 XI Changfeng WANG Bojun +7 位作者 ZHAO Fang HUA Daode QI Zongyao LIU Tong ZHAO Zeqi TANG Junshi ZHOU You WANG Hongzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期164-171,共8页
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi... The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions. 展开更多
关键词 light oil flue gas flooding thermal miscible flooding miscible law distillation phase transition minimum miscible pressure minimum miscible temperature
下载PDF
Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin 被引量:1
8
作者 XU Changgui GAO Yangdong +4 位作者 LIU Jun PENG Guangrong LIU Pei XIONG Wanlin SONG Penglin 《Petroleum Exploration and Development》 SCIE 2024年第1期15-30,共16页
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ... Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration. 展开更多
关键词 Pearl River Mouth Basin Huizhou Sag Huizhou 26 subsag PALEOGENE Enping Formation GLUTENITE large-and medium-sized oil and gas field
下载PDF
Geologic characteristics,exploration and production progress of shale oil and gas in the United States:An overview
9
作者 MCMAHON T P LARSON T E +1 位作者 ZHANG T SHUSTER M 《Petroleum Exploration and Development》 SCIE 2024年第4期925-948,共24页
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o... We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production. 展开更多
关键词 United States shale oil shale gas shale reservoirs unconventional reservoirs oil and gas production resource assessment
下载PDF
Insight into the experiment and extraction mechanism for separating carbazole from anthracene oil with quaternary ammonium-based deep eutectic solvents
10
作者 Xudong Zhang Yanhua Liu +4 位作者 Jun Shen Yugao Wang Gang Liu Yanxia Niu Qingtao Sheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期188-199,共12页
Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che... Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar. 展开更多
关键词 CARBAZOLE Model anthracene oil deep eutectic solvents COSMO-RS Extraction mechanism
下载PDF
A STAMP-Game model for accident analysis in oil and gas industry
11
作者 Huixing Meng Xu An +4 位作者 Daiwei Li Shijun Zhao Enrico Zio Xuan Liu Jinduo Xing 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2154-2167,共14页
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba... Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk. 展开更多
关键词 Accident analysis STAMP System engineering Gametheory oil and gas storage and transportation SYSTEMS
下载PDF
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
12
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales Shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction oil and gas exploration engineering VEINS Fluid activity
下载PDF
Geochemical prerequisites for the formation of oil and gas accumulation zones in the South Turgay basin,Kazakhstan
13
作者 Rima Kopbosynkyzy Madisheva Vassiliy Sergeevich Portnov +3 位作者 Gulmadina Bulatovna Amangeldiyeva Akmaral Bakhytbekovna Demeuova Yessimkhan Sherekhanovich Seitkhaziyev Dulat Kalimovich Azhgaliev 《Acta Geochimica》 EI CAS CSCD 2024年第3期520-534,共15页
This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter ... This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment. 展开更多
关键词 South Turgay Basin oil and gas potential Source rock Organic matter KEROGEN
下载PDF
Quantitative prediction model for the depth limit of oil accumulation in the deep carbonate rocks:A case study of Lower Ordovician in Tazhong area of Tarim Basin
14
作者 Wen-Yang Wang Xiong-Qi Pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Fu-Jie Jiang Ying Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期115-124,共10页
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b... With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling. 展开更多
关键词 deep layer Tarim Basin Hydrocarbon accumulation Depth limit of oil accumulation Prediction model
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
15
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking oil and gas pipelines
下载PDF
Origin of condensate oil and natural gas in Bozhong 19-6 gas field,Bohai Bay Basin
16
作者 Jianyong Xu Wei Li 《Energy Geoscience》 EI 2024年第1期54-62,共9页
The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin... The discovery of the Bozhong 19-6 gas field has opened a new frontier for deep gas exploration in the Bohai Bay Basin,with a great potential for further gas exploration.However,poor understanding of oil and gas origin has been limiting the exploration progress in this area.To clarify the origin of condensate oil and gas in Bozhong 19-6 gas field,this study adequately utilized the organic geochemical analysis data to investigate the composition and geochemical characteristics of condensate oil and natural gas,and analyzed the relationship between condensate oil and the three sets of source rocks in the nearby subsags.Results show that the lighter components dominate the condensate oil,with a forward type predominance.The parent material of crude oil was primarily deposited in a shallow,clay-rich,low-salinity,weakly reducing aquatic environment.The condensate and natural gas have similar parent source characteristics and maturity,with Ro ranging from 1.4%to 1.6%.Both are products of high maturity stage,indicating that they are hydrocarbon compounds produced by the same group of source rocks in the same stage.Oil-sources correlation shows that condensate oil and gas mainly originate from the source rocks of the third member of Shahejie Formation in the nearby subsags of the Bozhong 19-6 structural belt. 展开更多
关键词 Bozhong Sag Natural gas Condensate oil Light hydrocarbon gas-source correlation oil-source correlation
下载PDF
Evaluation and Application of Flowback Effect in Deep Shale Gas Wells
17
作者 Sha Liu Jianfa Wu +2 位作者 Xuefeng Yang Weiyang Xie Cheng Chang 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2301-2321,共21页
The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers.Given challenges such as intricate data analysis... The pivotal areas for the extensive and effective exploitation of shale gas in the Southern Sichuan Basin have recently transitioned from mid-deep layers to deep layers.Given challenges such as intricate data analysis,absence of effective assessment methodologies,real-time control strategies,and scarce knowledge of the factors influencing deep gas wells in the so-called flowback stage,a comprehensive study was undertaken on over 160 deep gas wells in Luzhou block utilizing linear flow models and advanced big data analytics techniques.The research results show that:(1)The flowback stage of a deep gas well presents the characteristics of late gas channeling,high flowback rate after gas channeling,low 30-day flowback rate,and high flowback rate corresponding to peak production;(2)The comprehensive parameter AcmKm1/2 in the flowback stage exhibits a strong correlation with the Estimated Ultimate Recovery(EUR),allowing for the establishment of a standardized chart to evaluate EUR classification in typical shale gas wells during this stage.This enables quantitative assessment of gas well EUR,providing valuable insights into production potential and performance;(3)The spacing range and the initial productivity of gas wells have a significant impact on the overall effectiveness of gas wells.Therefore,it is crucial to further explore rational well patterns and spacing,as well as optimize initial drainage and production technical strategies in order to improve their performance. 展开更多
关键词 deep shale gas flowback characteristic EUR forecast effect evaluation main controlling factors
下载PDF
Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells
18
作者 Yi Song Zheyu Hu +5 位作者 Cheng Shen Lan Ren Xingwu Guo Ran Lin Kun Wang Zhiyong Zhao 《Fluid Dynamics & Materials Processing》 EI 2024年第3期609-624,共16页
Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress i... Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress interference,which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fractureopenings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameteroptimization model is introduced for these plugging balls based on a multi-cluster fracture propagationmodel and a perforation dynamic abrasion model. This approach relies on proper consideration of the multiphasenature of the considered problem and the interaction force between the involved fluid and solid phases. Accordingly,it can take into account the behavior of the gradually changing hole diameter due to proppant continuousperforation erosion. Moreover, it can provide useful information about the fluid-dynamic behavior of the consideredsystem before and after plugging. It is shown that when the diameter of the temporary plugging ball is1.2 times that of the perforation hole, the perforation holes of each cluster can be effectively blocked. 展开更多
关键词 deep shale gas fracture propagation fluid mechanics fluid-solid coupling perforation hole abrasion
下载PDF
Influence of lithospheric thickness distribution on oil and gas basins,China seas and adjacent areas
19
作者 Jing Ma Wanyin Wang +4 位作者 Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期1-14,共14页
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ... The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas. 展开更多
关键词 China seas and adjacent areas lithospheric thickness oil and gas basins
下载PDF
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method
20
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部