Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechan...Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification.展开更多
This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element...This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element method is employed to formulate a rock-breaking model of the rotary disc cutters and a numerical simulation is also implemented.The rock breaking effect,rock breaking volume,and rock breaking specific energy consumption under different combinations of the factors are investigated.An orthogonal test of four factors at four levels was constructed.Based on the test results and range analysis in the process of deep rock mass breaking,the order of sensitivity of each influencing factor with respect to the rock breaking specific energy for the disc cutter is cutter spacing>revolution speed>penetration>confining pressure.By constructing a numerical simulation comparison scheme,the orthogonal test results are analyzed and corroborated,and the rock breaking law and rock breaking efficiency under different influencing factors are derived.Finally,the sensitivity of different influencing factors on the rock-breaking efficiency is verified.展开更多
Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong inter...Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress.展开更多
Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurre...Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurred as the result of movements of large-scale get-blocks under the impact of external pulses (such as a deep confined explosion, earthquakes, rock bursts and etc.). ALF phenomenon obtained its name to describe the curious phenomenon that the friction between interacting get-blocks qua- si-periodically disappears at some discrete points in time along the direction orthogonal to the direction of the external pulse. With the objective to confirm the existence of the ALF phenomenon and study the get-mechanical conditions for its occurrence experi- mentally and theoretically, laboratory tests on granite and cement mortar block models were carried out on a multipurpose testing system developed independently. The ALF phenomenon was realized under two loading schemes, i.e., blocks model and a working block were acted upon jointly by the action of a vertical impact and a horizontal static force, as well as the joint action of both ver- tical and horizontal impacts with differently delayed time intervals. We obtained the rules on variation of horizontal displacements of working blocks when the ALF phenomenon was realized in two tests. The discrete time delay intervals, corresponding to local maxima and minima of the horizontal displacement amplitudes and residual horizontal displacements of the working block, satis- fied canonical sequences multiplied by (√2)'. Some of these time intervals satisfied the quantitative expression (√2)' ,alva. At last, 1D dynamic theoretical model was established, the analytical results agreed better with the test data, while the quantitative expression drawn from test data was not validated well in theoretical analyses.展开更多
Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse w...Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a phenomenon of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently. The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplitudes and Fourier spectra) of stress wave in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardarce of high frequency waves. We compared our model test data with the data of in-situ measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendulum-type wave. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration satisfied several canonical sequences with the multiple of 2~(1/2), most of those frequencies satisfied the quantitative expression (2~(1/2))i V p/2△ .展开更多
The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constit...The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological...With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological disasters, such as rock burst, pressure bumping, large deformation of surrounding rock, brittle-ductile transition of rock and zonal disintegration of rock mass, which occur frequently in deep underground engineering rock mass. The impact load caused by collision, explosion, extrusion and outburst is the root cause of the dynamic instability of the deep rock mass. What should be emphasized is that high in-situ stress and blasting excavation disturbance complicate disaster developing mechanism of deep underground engineering rock mass and sharply increase the difficulty of controlling disaster. This paper is aimed at the research status and development trend, of which dynamic characteristics of deep high stress rock mass and its damage and failure effect each other under impact, and conduct analysis, in the later stage where I would discuss how to carry out the response law of the deep high-stress rock mass under the impact load and the mechanism of catastrophe developing, which is of great significance to build a model of instability and fracture evolution about deep rock mass under shock disturbance and to maintain its safety and stability.展开更多
It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_...It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation.展开更多
Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The pr...Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The proposed coring scheme is numerically modeled first,and then it is verified by comparative laboratory tests using rock samples both obtained by conventional coring method and the proposed damage-free coring method.The result indicates that the in-situ stresses in sampling area could be reduced by 30%-50% through drilling a certain number of destressing holes around the whole sampling area.The spacing between adjacent destressing holes is about 10 cm.The average uniaxial compressive strength(UCS) of rock samples obtained by the damage-free coring method in Jinping II hydropower station with overburden depth of 1 900 m is higher than that of samples obtained by the conventional coring method with the same depth by 5%-15% and an average of 8%.In addition,the effectiveness of damage-free coring method can also be verified by acoustic emission(AE) monitoring.The AE events monitored during uniaxial compression test of damage-free coring samples is fewer than that of conventional coring samples at the primarily loading phase.展开更多
Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high...Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high bearing capacity. In this study, the unconfined compressive strength(UCS) and rock mass cuttability index(RMCI) have been applied to investigating the shaft bearing capacity. For this purpose, a comprehensive database of 178 full-scale load tests is compiled by adding a data set(n = 72)collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017).Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS/RMCI. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data(series 3 in Rezazadeh and Eslami(2017)). Since rock-socketed shafts are supported by rock mass(not intact rock),a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, based upon RMR and RQD to consider the effect of the rock mass properties.展开更多
Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading condi...Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.展开更多
By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found t...By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found that zonal disintegration is a large scale shear-slip failure developed in deep surrounding rock mass under tri-axial stress, which is accompanied by a large amount of tensile failure. The distance between fractures and the number of fractures have a close correlation with the rock mass heterogeneity. With an increase of the homogeneity index of the rock mass, the distances between fractures decrease and the number of fractures increases. For an intact hard rock mass with relative high homogeneity, only failure mode characterized as v-shaped notches can be formed due to the intersection of intensively developed shear bands. None of the zonal disintegration can be formed due to the fact that with increasing homogeneity, the failure mechanism of rock mass is gradually dominated by shear failure rather than tensile failure.展开更多
An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su...An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.展开更多
In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on...In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data.展开更多
基金Project(50825403) supported by the National Science Fund for Distinguished Young ScholarsProject(2010CB732003) supported by the National Key Basic Research Program of ChinaProject(51021001) supported by the Science Fund for Creative Research Group of the National Natural Science Foundation of China
文摘Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification.
基金Project(51979156)supported by the National Natural Science Foundation of ChinaProject(tsqn202103087)supported by the Young Taishan Scholars,ChinaProject(2019KJG015)supported by the Youth Innovation Technology Project of Higher School in Shandong Province,China。
文摘This study investigates the factors affecting the rock-breaking efficiency of the TBM disc cutter in deep rock excavation,including confining pressure,penetration,cutter spacing,and revolution speed.The finite element method is employed to formulate a rock-breaking model of the rotary disc cutters and a numerical simulation is also implemented.The rock breaking effect,rock breaking volume,and rock breaking specific energy consumption under different combinations of the factors are investigated.An orthogonal test of four factors at four levels was constructed.Based on the test results and range analysis in the process of deep rock mass breaking,the order of sensitivity of each influencing factor with respect to the rock breaking specific energy for the disc cutter is cutter spacing>revolution speed>penetration>confining pressure.By constructing a numerical simulation comparison scheme,the orthogonal test results are analyzed and corroborated,and the rock breaking law and rock breaking efficiency under different influencing factors are derived.Finally,the sensitivity of different influencing factors on the rock-breaking efficiency is verified.
基金supported by the National Natural Science Foundation of China(Nos.50490275 and 50778184)
文摘Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress.
基金Projects 50525825 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National Basic Research Program of ChinaBK2008002 by the Natural Science Foundation of Jiangsu Province
文摘Deep rock mass has the unique "self-stressed" block-hierarchical structure, anomalous low friction (ALF) was one of the typical nonlinear get-mechanical and dynamic responses in deep block rock mass, which occurred as the result of movements of large-scale get-blocks under the impact of external pulses (such as a deep confined explosion, earthquakes, rock bursts and etc.). ALF phenomenon obtained its name to describe the curious phenomenon that the friction between interacting get-blocks qua- si-periodically disappears at some discrete points in time along the direction orthogonal to the direction of the external pulse. With the objective to confirm the existence of the ALF phenomenon and study the get-mechanical conditions for its occurrence experi- mentally and theoretically, laboratory tests on granite and cement mortar block models were carried out on a multipurpose testing system developed independently. The ALF phenomenon was realized under two loading schemes, i.e., blocks model and a working block were acted upon jointly by the action of a vertical impact and a horizontal static force, as well as the joint action of both ver- tical and horizontal impacts with differently delayed time intervals. We obtained the rules on variation of horizontal displacements of working blocks when the ALF phenomenon was realized in two tests. The discrete time delay intervals, corresponding to local maxima and minima of the horizontal displacement amplitudes and residual horizontal displacements of the working block, satis- fied canonical sequences multiplied by (√2)'. Some of these time intervals satisfied the quantitative expression (√2)' ,alva. At last, 1D dynamic theoretical model was established, the analytical results agreed better with the test data, while the quantitative expression drawn from test data was not validated well in theoretical analyses.
基金Projects 50525825 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National Basic Research Program of ChinaBK2008002 by the Natural Science Foundation of Jiangsu Province
文摘Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a phenomenon of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently. The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplitudes and Fourier spectra) of stress wave in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardarce of high frequency waves. We compared our model test data with the data of in-situ measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendulum-type wave. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration satisfied several canonical sequences with the multiple of 2~(1/2), most of those frequencies satisfied the quantitative expression (2~(1/2))i V p/2△ .
基金Projects 50525825, 50490275 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National BasicResearch Program of China
文摘The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
文摘With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological disasters, such as rock burst, pressure bumping, large deformation of surrounding rock, brittle-ductile transition of rock and zonal disintegration of rock mass, which occur frequently in deep underground engineering rock mass. The impact load caused by collision, explosion, extrusion and outburst is the root cause of the dynamic instability of the deep rock mass. What should be emphasized is that high in-situ stress and blasting excavation disturbance complicate disaster developing mechanism of deep underground engineering rock mass and sharply increase the difficulty of controlling disaster. This paper is aimed at the research status and development trend, of which dynamic characteristics of deep high stress rock mass and its damage and failure effect each other under impact, and conduct analysis, in the later stage where I would discuss how to carry out the response law of the deep high-stress rock mass under the impact load and the mechanism of catastrophe developing, which is of great significance to build a model of instability and fracture evolution about deep rock mass under shock disturbance and to maintain its safety and stability.
基金This research was supported by the National Natural Science Foundation of China(No.52104209)the Postdoctoral Research Foundation of China(No.2021M692192)+1 种基金the National Natural Science Foundation of China(Nos.51827901 and 52174082)the Program for Guangdong Introducing Innovative and Entrepre-neurial Teams(No.2019ZT08G315).
文摘It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation.
基金Supported by the National Basic Research Program of China (973 Program) (2010CB732003)the National Natural Science Foundation of China (51009013,50909077)
文摘Rock sampling with traditional coring method would cause initial damage to rock samples induced by in-situ stress relief during coring.To solve this problem,a damage-free coring method is proposed in this paper.The proposed coring scheme is numerically modeled first,and then it is verified by comparative laboratory tests using rock samples both obtained by conventional coring method and the proposed damage-free coring method.The result indicates that the in-situ stresses in sampling area could be reduced by 30%-50% through drilling a certain number of destressing holes around the whole sampling area.The spacing between adjacent destressing holes is about 10 cm.The average uniaxial compressive strength(UCS) of rock samples obtained by the damage-free coring method in Jinping II hydropower station with overburden depth of 1 900 m is higher than that of samples obtained by the conventional coring method with the same depth by 5%-15% and an average of 8%.In addition,the effectiveness of damage-free coring method can also be verified by acoustic emission(AE) monitoring.The AE events monitored during uniaxial compression test of damage-free coring samples is fewer than that of conventional coring samples at the primarily loading phase.
文摘Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high bearing capacity. In this study, the unconfined compressive strength(UCS) and rock mass cuttability index(RMCI) have been applied to investigating the shaft bearing capacity. For this purpose, a comprehensive database of 178 full-scale load tests is compiled by adding a data set(n = 72)collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017).Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS/RMCI. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data(series 3 in Rezazadeh and Eslami(2017)). Since rock-socketed shafts are supported by rock mass(not intact rock),a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, based upon RMR and RQD to consider the effect of the rock mass properties.
基金sponsored by the National Science Fund for Distinguished Young Scholars(50825403)the National Key Basic Research Program of China(2010CB732003,2013CB036005)the Science Fund for Creative Research Group of the National Natural Science Foundation of China(51021001)
文摘Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.
基金supported by the National Natural Science Foundation of China (Nos. 51304036, 51222401 and 51174045)the Fundamental Research Funds for the Central Universities of China(Nos. N120101001 and N120601002)+1 种基金the National Basic Research Program of China (No. 2013CB227900)the China-South Africa Joint Research Program (No. 2012DFG71060)
文摘By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found that zonal disintegration is a large scale shear-slip failure developed in deep surrounding rock mass under tri-axial stress, which is accompanied by a large amount of tensile failure. The distance between fractures and the number of fractures have a close correlation with the rock mass heterogeneity. With an increase of the homogeneity index of the rock mass, the distances between fractures decrease and the number of fractures increases. For an intact hard rock mass with relative high homogeneity, only failure mode characterized as v-shaped notches can be formed due to the intersection of intensively developed shear bands. None of the zonal disintegration can be formed due to the fact that with increasing homogeneity, the failure mechanism of rock mass is gradually dominated by shear failure rather than tensile failure.
文摘An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania.
基金supported by the 973 Project(No.2014CB046903)the National Natural Science Foundation of China(Nos.51325903 and 51279218)the Natural Science Foundation Project of CQ CSTC(Nos.CSTC2013KJRC-1JRCCJ30001 and CSTC2013JCYJYS0005)
文摘In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data.