Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a ma...Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a massive quantity of data comprising both mobility and service-related data.For the extraction of meaningful and related details out of the generated data,data science acts as an essential part of the upcoming C-ITS applications.At the same time,prediction of short-term traffic flow is highly essential to manage the traffic accurately.Due to the rapid increase in the amount of traffic data,deep learning(DL)models are widely employed,which uses a non-parametric approach for dealing with traffic flow forecasting.This paper focuses on the design of intelligent deep learning based short-termtraffic flow prediction(IDL-STFLP)model for C-ITS that assists the people in various ways,namely optimization of signal timing by traffic signal controllers,travelers being able to adapt and alter their routes,and so on.The presented IDLSTFLP model operates on two main stages namely vehicle counting and traffic flow prediction.The IDL-STFLP model employs the Fully Convolutional Redundant Counting(FCRC)based vehicle count process.In addition,deep belief network(DBN)model is applied for the prediction of short-term traffic flow.To further improve the performance of the DBN in traffic flow prediction,it will be optimized by Quantum-behaved bat algorithm(QBA)which optimizes the tunable parameters of DBN.Experimental results based on benchmark dataset show that the presented method can count vehicles and predict traffic flowin real-time with amaximumperformance under dissimilar environmental situations.展开更多
The"three shells"cooperative support technology was proposed herein according to both the large deformation of the rock surrounding large-section chambers in deep mines and the precarious stability of the su...The"three shells"cooperative support technology was proposed herein according to both the large deformation of the rock surrounding large-section chambers in deep mines and the precarious stability of the support structures therein.The development range of the plastic zone in the surrounding rock was controlled by a stress shell to reduce the difficulty of controlling the surrounding rock.Additionally,the residual strength of the rock mass in the plastic zone and the self-bearing capacity of the surrounding rock were improved by a reinforced load-bearing shell.Furthermore,a passive load-bearing shell could restore the triaxial stress state of the surrounding rock on the free surface,reduce the influence of the external environment on the surrounding rock,and reinforce the surrounding rock with the strength of the shell.Reasonable layouts of large-section chambers were determined by analyzing the control effect of the stress shell on the surrounding rock under three kinds of in situ stress fields.The orthogonal test method was applied to reveal the influences of different support parameters in the reinforced loadbearing shell and passive load-bearing shell on the surrounding rock stability.The surrounding rock control effect of the"three shells"collaborative support technology was analyzed through numerical simulation and field monitoring.The results show that the maximum displacement between the roof and floor of the coal preparation chamber in the Xinjulong coal mine was approximately 48 mm,and the maximum displacement between its two sides was approximately 65 mm,indicating that the technology proposed herein could meet the long-term control requirements of the surrounding rock stability for large-section chambers in deep mines.展开更多
Rate splitting multiple access(RSMA)has shown great potentials for the next generation communication systems.In this work,we consider a two-user system in hybrid satellite terrestrial network(HSTN)where one of them is...Rate splitting multiple access(RSMA)has shown great potentials for the next generation communication systems.In this work,we consider a two-user system in hybrid satellite terrestrial network(HSTN)where one of them is heavily shadowed and the other uses cooperative RSMA to improve the transmission quality.The non-convex weighted sum rate(WSR)problem formulated based on this model is usually optimized by computational burdened weighted minimum mean square error(WMMSE)algorithm.We propose to apply deep unfolding to solve the optimization problem,which maps WMMSE iterations into a layer-wise network and could achieve better performance within limited iterations.We also incorporate momentum accelerated projection gradient descent(PGD)algorithm to circumvent the complicated operations in WMMSE that are not amenable for unfolding and mapping.The momentum and step size in deep unfolding network are selected as trainable parameters for training.As shown in the simulation results,deep unfolding scheme has WSR and convergence speed advantages over original WMMSE algorithm.展开更多
The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.H...The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.However,heterogeneous cache nodes have different communication modes and limited caching capacities.In addition,the high mobility of vehicles renders the more complicated caching environment.Therefore,performing efficient cooperative caching becomes a key issue.In this paper,we propose a cross-tier cooperative caching architecture for all contents,which allows the distributed cache nodes to cooperate.Then,we devise the communication link and content caching model to facilitate timely content delivery.Aiming at minimizing transmission delay and cache cost,an optimization problem is formulated.Furthermore,we use a multi-agent deep reinforcement learning(MADRL)approach to model the decision-making process for caching among heterogeneous cache nodes,where each agent interacts with the environment collectively,receives observations yet a common reward,and learns its own optimal policy.Extensive simulations validate that the MADRL approach can enhance hit ratio while reducing transmission delay and cache cost.展开更多
The paper is to explore whether or not group cooperative learning in author’s university can make students learning deeply.In 2004,the Chinese Ministry of Education constituted"College English Teaching Syllabus&...The paper is to explore whether or not group cooperative learning in author’s university can make students learning deeply.In 2004,the Chinese Ministry of Education constituted"College English Teaching Syllabus"(College English Teaching Syllabus,2004,showed in appendix),in which it makes it clear that the properties and objectives of College English teaching are:College English teaching is a teaching system which has the content of English language knowledge,English applied skills,learning strategies,intercultural communication.According to the syllabus,lots of Chinese universities will aim to explore new and effective teaching modes,which will stimulate college English teachers to reflect their traditional teaching methods and make the corresponding improvement inevitably.展开更多
Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Und...Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Under the 5G network structure,we consider a cooperative caching scheme inside each cluster with SVC to economically utilize the limited caching storage.A novel multi-agent deep reinforcement learning(MADRL)framework is proposed to jointly optimize the video access delay and users’satisfaction,where an aggregation node is introduced helping individual agents to achieve global observations and overall system rewards.Moreover,to cope with the large action space caused by the large number of videos and users,a dimension decomposition method is embedded into the neural network in each agent,which greatly reduce the computational complexity and memory cost of the reinforcement learning.Experimental results show that:1)the proposed value-decomposed dimensional network(VDDN)algorithm achieves an obvious performance gain versus the traditional MADRL;2)the proposed VDDN algorithm can handle an extremely large action space and quickly converge with a low computational complexity.展开更多
To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model wit...To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model without boundary constraints are built,and the criteria for successful target capture are given.Then,the cooperative hunting problem of a USV fleet is modeled as a decentralized partially observable Markov decision process(Dec-POMDP),and a distributed partially observable multitarget hunting Proximal Policy Optimization(DPOMH-PPO)algorithm applicable to USVs is proposed.In addition,an observation model,a reward function and the action space applicable to multi-target hunting tasks are designed.To deal with the dynamic change of observational feature dimension input by partially observable systems,a feature embedding block is proposed.By combining the two feature compression methods of column-wise max pooling(CMP)and column-wise average-pooling(CAP),observational feature encoding is established.Finally,the centralized training and decentralized execution framework is adopted to complete the training of hunting strategy.Each USV in the fleet shares the same policy and perform actions independently.Simulation experiments have verified the effectiveness of the DPOMH-PPO algorithm in the test scenarios with different numbers of USVs.Moreover,the advantages of the proposed model are comprehensively analyzed from the aspects of algorithm performance,migration effect in task scenarios and self-organization capability after being damaged,the potential deployment and application of DPOMH-PPO in the real environment is verified.展开更多
This paper is concerned with the cooperative target stalking for a multi-unmanned surface vehicle(multi-USV)system.Based on the multi-agent deep deterministic policy gradient(MADDPG)algorithm,a multi-USV target stalki...This paper is concerned with the cooperative target stalking for a multi-unmanned surface vehicle(multi-USV)system.Based on the multi-agent deep deterministic policy gradient(MADDPG)algorithm,a multi-USV target stalking(MUTS)algorithm is proposed.Firstly,a V-type probabilistic data extraction method is proposed for the first time to overcome shortcomings of the MADDPG algorithm.The advantages of the proposed method are twofold:1)it can reduce the amount of data and shorten training time;2)it can filter out more important data in the experience buffer for training.Secondly,in order to avoid the collisions of USVs during the stalking process,an action constraint method called Safe DDPG is introduced.Finally,the MUTS algorithm and some existing algorithms are compared in cooperative target stalking scenarios.In order to demonstrate the effectiveness of the proposed MUTS algorithm in stalking tasks,mission operating scenarios and reward functions are well designed in this paper.The proposed MUTS algorithm can help the multi-USV system avoid internal collisions during the mission execution.Moreover,compared with some existing algorithms,the newly proposed one can provide a higher convergence speed and a narrower convergence domain.展开更多
文摘Cooperative Intelligent Transport System(C-ITS)plays a vital role in the future road traffic management system.A vital element of C-ITS comprises vehicles,road side units,and traffic command centers,which produce a massive quantity of data comprising both mobility and service-related data.For the extraction of meaningful and related details out of the generated data,data science acts as an essential part of the upcoming C-ITS applications.At the same time,prediction of short-term traffic flow is highly essential to manage the traffic accurately.Due to the rapid increase in the amount of traffic data,deep learning(DL)models are widely employed,which uses a non-parametric approach for dealing with traffic flow forecasting.This paper focuses on the design of intelligent deep learning based short-termtraffic flow prediction(IDL-STFLP)model for C-ITS that assists the people in various ways,namely optimization of signal timing by traffic signal controllers,travelers being able to adapt and alter their routes,and so on.The presented IDLSTFLP model operates on two main stages namely vehicle counting and traffic flow prediction.The IDL-STFLP model employs the Fully Convolutional Redundant Counting(FCRC)based vehicle count process.In addition,deep belief network(DBN)model is applied for the prediction of short-term traffic flow.To further improve the performance of the DBN in traffic flow prediction,it will be optimized by Quantum-behaved bat algorithm(QBA)which optimizes the tunable parameters of DBN.Experimental results based on benchmark dataset show that the presented method can count vehicles and predict traffic flowin real-time with amaximumperformance under dissimilar environmental situations.
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.2019XKQYMS61).
文摘The"three shells"cooperative support technology was proposed herein according to both the large deformation of the rock surrounding large-section chambers in deep mines and the precarious stability of the support structures therein.The development range of the plastic zone in the surrounding rock was controlled by a stress shell to reduce the difficulty of controlling the surrounding rock.Additionally,the residual strength of the rock mass in the plastic zone and the self-bearing capacity of the surrounding rock were improved by a reinforced load-bearing shell.Furthermore,a passive load-bearing shell could restore the triaxial stress state of the surrounding rock on the free surface,reduce the influence of the external environment on the surrounding rock,and reinforce the surrounding rock with the strength of the shell.Reasonable layouts of large-section chambers were determined by analyzing the control effect of the stress shell on the surrounding rock under three kinds of in situ stress fields.The orthogonal test method was applied to reveal the influences of different support parameters in the reinforced loadbearing shell and passive load-bearing shell on the surrounding rock stability.The surrounding rock control effect of the"three shells"collaborative support technology was analyzed through numerical simulation and field monitoring.The results show that the maximum displacement between the roof and floor of the coal preparation chamber in the Xinjulong coal mine was approximately 48 mm,and the maximum displacement between its two sides was approximately 65 mm,indicating that the technology proposed herein could meet the long-term control requirements of the surrounding rock stability for large-section chambers in deep mines.
基金sponsored by National Natural Science Foundation of China (No. 61871422, No.62027801)
文摘Rate splitting multiple access(RSMA)has shown great potentials for the next generation communication systems.In this work,we consider a two-user system in hybrid satellite terrestrial network(HSTN)where one of them is heavily shadowed and the other uses cooperative RSMA to improve the transmission quality.The non-convex weighted sum rate(WSR)problem formulated based on this model is usually optimized by computational burdened weighted minimum mean square error(WMMSE)algorithm.We propose to apply deep unfolding to solve the optimization problem,which maps WMMSE iterations into a layer-wise network and could achieve better performance within limited iterations.We also incorporate momentum accelerated projection gradient descent(PGD)algorithm to circumvent the complicated operations in WMMSE that are not amenable for unfolding and mapping.The momentum and step size in deep unfolding network are selected as trainable parameters for training.As shown in the simulation results,deep unfolding scheme has WSR and convergence speed advantages over original WMMSE algorithm.
基金supported by the National Natural Science Foundation of China(62231020,62101401)the Youth Innovation Team of Shaanxi Universities。
文摘The growing demand for low delay vehicular content has put tremendous strain on the backbone network.As a promising alternative,cooperative content caching among different cache nodes can reduce content access delay.However,heterogeneous cache nodes have different communication modes and limited caching capacities.In addition,the high mobility of vehicles renders the more complicated caching environment.Therefore,performing efficient cooperative caching becomes a key issue.In this paper,we propose a cross-tier cooperative caching architecture for all contents,which allows the distributed cache nodes to cooperate.Then,we devise the communication link and content caching model to facilitate timely content delivery.Aiming at minimizing transmission delay and cache cost,an optimization problem is formulated.Furthermore,we use a multi-agent deep reinforcement learning(MADRL)approach to model the decision-making process for caching among heterogeneous cache nodes,where each agent interacts with the environment collectively,receives observations yet a common reward,and learns its own optimal policy.Extensive simulations validate that the MADRL approach can enhance hit ratio while reducing transmission delay and cache cost.
文摘The paper is to explore whether or not group cooperative learning in author’s university can make students learning deeply.In 2004,the Chinese Ministry of Education constituted"College English Teaching Syllabus"(College English Teaching Syllabus,2004,showed in appendix),in which it makes it clear that the properties and objectives of College English teaching are:College English teaching is a teaching system which has the content of English language knowledge,English applied skills,learning strategies,intercultural communication.According to the syllabus,lots of Chinese universities will aim to explore new and effective teaching modes,which will stimulate college English teachers to reflect their traditional teaching methods and make the corresponding improvement inevitably.
基金supported by the National Natural Science Foundation of China under Grant No.61801119。
文摘Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Under the 5G network structure,we consider a cooperative caching scheme inside each cluster with SVC to economically utilize the limited caching storage.A novel multi-agent deep reinforcement learning(MADRL)framework is proposed to jointly optimize the video access delay and users’satisfaction,where an aggregation node is introduced helping individual agents to achieve global observations and overall system rewards.Moreover,to cope with the large action space caused by the large number of videos and users,a dimension decomposition method is embedded into the neural network in each agent,which greatly reduce the computational complexity and memory cost of the reinforcement learning.Experimental results show that:1)the proposed value-decomposed dimensional network(VDDN)algorithm achieves an obvious performance gain versus the traditional MADRL;2)the proposed VDDN algorithm can handle an extremely large action space and quickly converge with a low computational complexity.
基金financial support from National Natural Science Foundation of China(Grant No.61601491)Natural Science Foundation of Hubei Province,China(Grant No.2018CFC865)Military Research Project of China(-Grant No.YJ2020B117)。
文摘To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model without boundary constraints are built,and the criteria for successful target capture are given.Then,the cooperative hunting problem of a USV fleet is modeled as a decentralized partially observable Markov decision process(Dec-POMDP),and a distributed partially observable multitarget hunting Proximal Policy Optimization(DPOMH-PPO)algorithm applicable to USVs is proposed.In addition,an observation model,a reward function and the action space applicable to multi-target hunting tasks are designed.To deal with the dynamic change of observational feature dimension input by partially observable systems,a feature embedding block is proposed.By combining the two feature compression methods of column-wise max pooling(CMP)and column-wise average-pooling(CAP),observational feature encoding is established.Finally,the centralized training and decentralized execution framework is adopted to complete the training of hunting strategy.Each USV in the fleet shares the same policy and perform actions independently.Simulation experiments have verified the effectiveness of the DPOMH-PPO algorithm in the test scenarios with different numbers of USVs.Moreover,the advantages of the proposed model are comprehensively analyzed from the aspects of algorithm performance,migration effect in task scenarios and self-organization capability after being damaged,the potential deployment and application of DPOMH-PPO in the real environment is verified.
基金supported in part by the National Natural Science Foundation of China(61873335,61833011,62173164)the Project of Science and Technology Commission of Shanghai Municipality,China(20ZR1420200,21SQBS01600,22JC1401400,19510750300,21190780300)the Natural Science Foundation of Jiangsu Province of China(BK20201451)。
文摘This paper is concerned with the cooperative target stalking for a multi-unmanned surface vehicle(multi-USV)system.Based on the multi-agent deep deterministic policy gradient(MADDPG)algorithm,a multi-USV target stalking(MUTS)algorithm is proposed.Firstly,a V-type probabilistic data extraction method is proposed for the first time to overcome shortcomings of the MADDPG algorithm.The advantages of the proposed method are twofold:1)it can reduce the amount of data and shorten training time;2)it can filter out more important data in the experience buffer for training.Secondly,in order to avoid the collisions of USVs during the stalking process,an action constraint method called Safe DDPG is introduced.Finally,the MUTS algorithm and some existing algorithms are compared in cooperative target stalking scenarios.In order to demonstrate the effectiveness of the proposed MUTS algorithm in stalking tasks,mission operating scenarios and reward functions are well designed in this paper.The proposed MUTS algorithm can help the multi-USV system avoid internal collisions during the mission execution.Moreover,compared with some existing algorithms,the newly proposed one can provide a higher convergence speed and a narrower convergence domain.