A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum...A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.展开更多
Treatment-induced apoptosis of cancer cells is one goal of cancer therapy.Interestingly,more heat is generated by mitochondria during apoptosis,especially the uncoupled apoptotic state,^(1,2) compared to the resting s...Treatment-induced apoptosis of cancer cells is one goal of cancer therapy.Interestingly,more heat is generated by mitochondria during apoptosis,especially the uncoupled apoptotic state,^(1,2) compared to the resting state.In this case study,we explore these thermal effects by longitudinally measuring temperature variations in a breast lesion of a pathological complete responder during neoadjuvant chemotherapy(NAC).Diffuse Optical Spectroscopic Imaging(DOSI)was employed to derive absolute deep tissue temperature using subtle spectral features of the water peak at 975 nm.^(3)A significant temperature increase was observed in time windows during the anthracycline and cyclophosphamide(AC)regimen but not in the paclitaxel and bevacizumab regimen.Hemoglobin concentration changes generally did not follow temperature,suggesting the measured temperature increases were likely due to mitochondrial uncoupling rather than a direct vascular effect.A simultaneous increase of tissue oxygen saturation with temperature was observed,suggesting that oxidative stress also contributes to apoptosis.Although preliminary,this study indicates longitudinal DOSI tissue temperature monitoring provides information that can improve our understanding of the mechanisms of tissue response during NAC.展开更多
Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the...Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead.展开更多
The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined env...The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined environmental on human physiology factors, including temperature, humidity, noise, pressure,toxic and harmful gases in terms of environmental characteristics in underground mines and an artificial intelligence system for simulation of the environment in a confined space of deep mines. Our results show that the systolic pressure, diastolic pressure, mean pressure, heart rate, respiratory rate, typing test speed and memory level percentage are negatively correlated with temperature value, and positively correlated with humidity value; the human temperature and weight are positively correlated with temperature value, and negatively correlated with humidity value. This research lays the foundation for the study of interaction between the deep confined space environment and safety behavior.展开更多
In the models to create a representation of the internal structure of the Earth, the distribution thicknesses of the layers, density and pressure is usually clearly shown while the idea of the distribution of temperat...In the models to create a representation of the internal structure of the Earth, the distribution thicknesses of the layers, density and pressure is usually clearly shown while the idea of the distribution of temperature in them is extremely vague. Without any doubt, this is very important information that temperature should play a significant role in all of these models. In the presented work, the results of studying of a heat flow distribution and calculations of temperatures of the crust of the Eastern Black Sea water area and adjoining territory are given. The distribution of a heat flow is made on the basis of the experimental data and also on the basis of the calculated flow values. Temperature calculation was performed by solving the heat equation. Study region was covered with equal-step grid and in its node bedding depths of boundary surfaces are known. The temperature calculations were performed at the nodes of the lattice at the bottom of the sedimentary complex, and at the border of Conrad and Moho. The calculations take into account the dependence of the coefficient of thermal conductivity of rocks on temperature.展开更多
This study aimed to conduct statistical analysis of temperature,relative humidity,wind direction,wind velocity,deep ground temperature and other related data from National Meteorological Observing Station of Hejian Ci...This study aimed to conduct statistical analysis of temperature,relative humidity,wind direction,wind velocity,deep ground temperature and other related data from National Meteorological Observing Station of Hejian City in 2012.According to the results,observation data varied due to different instruments and equipments,surrounding environments and underlying surface properties.The difference value of monthly average temperature between new site and old site ranged from-0.5 to 0 ℃; the difference value of monthly average maximum temperature ranged from-0.4 to 0.2 ℃; the difference value of monthly average minimum temperature ranged from-0.8 to 0 ℃; the difference value of monthly extreme maximum temperature ranged from-1.1 to 0.6 ℃; the difference value of monthly extreme minimum temperature ranged from-1.2 to 0.3 ℃.Annual average temperature,annual average maximum temperature and annual average minimum temperature in new site were lower than those in old site; annual extreme maximum temperature in new site was higher than that in old site; annual extreme minimum temperature in new site was lower than that in old site.The difference value of monthly average relative humidity between new site and old site ranged from 2% to 6%; the difference value of monthly minimum relative humidity ranged from-4% to 5%.Annual minimum relative humidity in new site was consistent with that in old site.The difference value of 2 min average wind velocity between new site and old site ranged from-0.1 to 0.4 m/s; the difference value of monthly maximum wind velocity ranged from-1.2 to 2.2 m/s; the difference value of monthly extreme wind velocity ranged from-2.0 to 2.8 m/s.Annual maximum wind velocity in new site was basically consistent with that in old site; annual extreme wind velocity in new site was significantly higher than that in old site; annual wind direction frequency in new site was lower than that in old site; annual most frequent wind direction in new site was S and that in old site was SSW.The difference value of average temperature at the depth of 40 cm ranged from-1.1 to 2.5 ℃; the difference value of average temperature at the depth of 80 cm ranged from-2.4 to 2.1 ℃; the difference value of average temperature at the depth of 160 cm ranged from-2.5 to 2.7 ℃; the difference value of average temperature at the depth of 320 cm ranged from-1.6 to 1.1 ℃.Annual average temperatures at the depths of 40 and 160 cm in new site were higher than those in old site,while annual average temperatures at the depths of 80 and 320 cm in new site were lower than those in old site.This paper provided certain correction stand for the use of observation data from new and old sites.展开更多
Traditional environmental control methods for poultry housing which rely solely on environmental factors fall short in meeting thermal and physiological needs of the animals.New methods are needed that factor in the p...Traditional environmental control methods for poultry housing which rely solely on environmental factors fall short in meeting thermal and physiological needs of the animals.New methods are needed that factor in the physiological needs and responses of the animals in order to maximize well-being of the animals and minimize heat stress.Deep body temperature(DBT)has been shown in the literature to be a strong indicator of heat stress,therefore studies are needed that help us gain a deeper understanding of the relationship between this variable and environmental conditions.The aim of this study was to identify the order of the dynamic response of poultry DBT to large step changes in ambient temperature(AT).Temperature steps had to be big enough to take the chickens out of their homeothermic zone.A total of 46 DBT/AT data sets with 23 upward AT steps and 23 downward AT steps were obtained using a biotelemetry system,and involving three chickens.DBT responses of individual chickens to step changes in AT were found to have a 0.88 average Pearson correlation suggesting consistency in chickens’responses to the same stimuli(p<0.0005).The data indicated that DBT responses to AT followed a first order behavior in most cases with an average time constant of 1.6 h,and the curve fitting method was used to validate this observation.There was a 0.88 average correlation between DBT model and measured data(p<0.0005).These results indicate statistical significance in the data used and the model derived from it.In conclusion,it is reasonable to assume that the dynamic response of poultry DBT to large step changes in ambient temperature follows a first order model.Although further studies are needed to more fully derive the model,this study provided a stepping-stone towards gaining a better understanding of the relationship between DBT and AT,therefore taking us one step closer towards making optimal management and risk assessment decisions that are based on physiological needs of the chickens.展开更多
This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since co...This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.展开更多
This work was undertaken to investigate the microstructural evolution, mechanical properties and fracture behavior of sand-cast Mg-6 Gd-3 Y-0.5 Zr(GW63) alloy subject to thermal cycling treatment. In order to simulate...This work was undertaken to investigate the microstructural evolution, mechanical properties and fracture behavior of sand-cast Mg-6 Gd-3 Y-0.5 Zr(GW63) alloy subject to thermal cycling treatment. In order to simulate the thermal cycling under extreme service conditions(space or moon environments), the sand-cast and T6 treated GW63 alloys were subjected to thermal cycling treatment which consists of deep cryogenic-elevated temperature cycling treatment(DCET) and deep cryogenic cycling treatment(DCT). Results indicate that there are significant gains in yield strength(YS) and ultimate tensile strength(UTS) of the sand-cast GW63 alloy after DCET, whereas the T6 state alloy undergoes a different variation in mechanical properties. However, no appreciable influence is revealed on the mechanical properties of the tested GW63 alloys after DCT. Meanwhile, the DCT and DCET have no obvious effects on the fracture morphology. The DCT enhances the precipitation kinetics via providing favorable nucleation sites for the precipitation of second phases. The elevated temperature process of DCET plays a crucial role in improving the aging-hardening responses and releasing the stress concentration brought by DCT to a great extent, leading to overcome the obstacle of essential phase transformation. The changes in mechanical properties are primarily attributed to the phase transformation of the studied alloys during DCET.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50475052)Provincial Natural Science Foundation of Liaoning (No.20022161)Provincial Scientific Research Plan of Education Office of Uaoning(No.202223206).
文摘A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.
基金This work was supported by NIH R01-CA75124,R01-EB002109Susan G.Komen for the Cure Postdoctoral Fellowship provided to University of Pennsylvania,and P41-RR01192,U54-CA105480,U54CA136400,P30-CA62203 provided to University of California,Irvine.
文摘Treatment-induced apoptosis of cancer cells is one goal of cancer therapy.Interestingly,more heat is generated by mitochondria during apoptosis,especially the uncoupled apoptotic state,^(1,2) compared to the resting state.In this case study,we explore these thermal effects by longitudinally measuring temperature variations in a breast lesion of a pathological complete responder during neoadjuvant chemotherapy(NAC).Diffuse Optical Spectroscopic Imaging(DOSI)was employed to derive absolute deep tissue temperature using subtle spectral features of the water peak at 975 nm.^(3)A significant temperature increase was observed in time windows during the anthracycline and cyclophosphamide(AC)regimen but not in the paclitaxel and bevacizumab regimen.Hemoglobin concentration changes generally did not follow temperature,suggesting the measured temperature increases were likely due to mitochondrial uncoupling rather than a direct vascular effect.A simultaneous increase of tissue oxygen saturation with temperature was observed,suggesting that oxidative stress also contributes to apoptosis.Although preliminary,this study indicates longitudinal DOSI tissue temperature monitoring provides information that can improve our understanding of the mechanisms of tissue response during NAC.
文摘Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead.
基金funded by ‘‘a group of four’’ Safety Science and Technology Project of State Production Safety Supervision Administration of China (No. 20130801)
文摘The research studied the influences of high temperature, high pressure, high humidity, noise and other harmful factors in mining conditions on the people health and safety, and investigated the impacts of confined environmental on human physiology factors, including temperature, humidity, noise, pressure,toxic and harmful gases in terms of environmental characteristics in underground mines and an artificial intelligence system for simulation of the environment in a confined space of deep mines. Our results show that the systolic pressure, diastolic pressure, mean pressure, heart rate, respiratory rate, typing test speed and memory level percentage are negatively correlated with temperature value, and positively correlated with humidity value; the human temperature and weight are positively correlated with temperature value, and negatively correlated with humidity value. This research lays the foundation for the study of interaction between the deep confined space environment and safety behavior.
文摘In the models to create a representation of the internal structure of the Earth, the distribution thicknesses of the layers, density and pressure is usually clearly shown while the idea of the distribution of temperature in them is extremely vague. Without any doubt, this is very important information that temperature should play a significant role in all of these models. In the presented work, the results of studying of a heat flow distribution and calculations of temperatures of the crust of the Eastern Black Sea water area and adjoining territory are given. The distribution of a heat flow is made on the basis of the experimental data and also on the basis of the calculated flow values. Temperature calculation was performed by solving the heat equation. Study region was covered with equal-step grid and in its node bedding depths of boundary surfaces are known. The temperature calculations were performed at the nodes of the lattice at the bottom of the sedimentary complex, and at the border of Conrad and Moho. The calculations take into account the dependence of the coefficient of thermal conductivity of rocks on temperature.
文摘This study aimed to conduct statistical analysis of temperature,relative humidity,wind direction,wind velocity,deep ground temperature and other related data from National Meteorological Observing Station of Hejian City in 2012.According to the results,observation data varied due to different instruments and equipments,surrounding environments and underlying surface properties.The difference value of monthly average temperature between new site and old site ranged from-0.5 to 0 ℃; the difference value of monthly average maximum temperature ranged from-0.4 to 0.2 ℃; the difference value of monthly average minimum temperature ranged from-0.8 to 0 ℃; the difference value of monthly extreme maximum temperature ranged from-1.1 to 0.6 ℃; the difference value of monthly extreme minimum temperature ranged from-1.2 to 0.3 ℃.Annual average temperature,annual average maximum temperature and annual average minimum temperature in new site were lower than those in old site; annual extreme maximum temperature in new site was higher than that in old site; annual extreme minimum temperature in new site was lower than that in old site.The difference value of monthly average relative humidity between new site and old site ranged from 2% to 6%; the difference value of monthly minimum relative humidity ranged from-4% to 5%.Annual minimum relative humidity in new site was consistent with that in old site.The difference value of 2 min average wind velocity between new site and old site ranged from-0.1 to 0.4 m/s; the difference value of monthly maximum wind velocity ranged from-1.2 to 2.2 m/s; the difference value of monthly extreme wind velocity ranged from-2.0 to 2.8 m/s.Annual maximum wind velocity in new site was basically consistent with that in old site; annual extreme wind velocity in new site was significantly higher than that in old site; annual wind direction frequency in new site was lower than that in old site; annual most frequent wind direction in new site was S and that in old site was SSW.The difference value of average temperature at the depth of 40 cm ranged from-1.1 to 2.5 ℃; the difference value of average temperature at the depth of 80 cm ranged from-2.4 to 2.1 ℃; the difference value of average temperature at the depth of 160 cm ranged from-2.5 to 2.7 ℃; the difference value of average temperature at the depth of 320 cm ranged from-1.6 to 1.1 ℃.Annual average temperatures at the depths of 40 and 160 cm in new site were higher than those in old site,while annual average temperatures at the depths of 80 and 320 cm in new site were lower than those in old site.This paper provided certain correction stand for the use of observation data from new and old sites.
文摘Traditional environmental control methods for poultry housing which rely solely on environmental factors fall short in meeting thermal and physiological needs of the animals.New methods are needed that factor in the physiological needs and responses of the animals in order to maximize well-being of the animals and minimize heat stress.Deep body temperature(DBT)has been shown in the literature to be a strong indicator of heat stress,therefore studies are needed that help us gain a deeper understanding of the relationship between this variable and environmental conditions.The aim of this study was to identify the order of the dynamic response of poultry DBT to large step changes in ambient temperature(AT).Temperature steps had to be big enough to take the chickens out of their homeothermic zone.A total of 46 DBT/AT data sets with 23 upward AT steps and 23 downward AT steps were obtained using a biotelemetry system,and involving three chickens.DBT responses of individual chickens to step changes in AT were found to have a 0.88 average Pearson correlation suggesting consistency in chickens’responses to the same stimuli(p<0.0005).The data indicated that DBT responses to AT followed a first order behavior in most cases with an average time constant of 1.6 h,and the curve fitting method was used to validate this observation.There was a 0.88 average correlation between DBT model and measured data(p<0.0005).These results indicate statistical significance in the data used and the model derived from it.In conclusion,it is reasonable to assume that the dynamic response of poultry DBT to large step changes in ambient temperature follows a first order model.Although further studies are needed to more fully derive the model,this study provided a stepping-stone towards gaining a better understanding of the relationship between DBT and AT,therefore taking us one step closer towards making optimal management and risk assessment decisions that are based on physiological needs of the chickens.
文摘This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.
基金supported by the National Natural Science Foundation of China(Nos.51771115 and 51775334)the National Science and Technology Major Project(No.2017ZX04006001)+1 种基金the Joint Fund for Space Science and Technology(Nos.6141B06310106 and 6141B06300401)the Research Program of Joint Research Center of Advanced Spaceflight Technologies(No.USCAST2016-18)。
文摘This work was undertaken to investigate the microstructural evolution, mechanical properties and fracture behavior of sand-cast Mg-6 Gd-3 Y-0.5 Zr(GW63) alloy subject to thermal cycling treatment. In order to simulate the thermal cycling under extreme service conditions(space or moon environments), the sand-cast and T6 treated GW63 alloys were subjected to thermal cycling treatment which consists of deep cryogenic-elevated temperature cycling treatment(DCET) and deep cryogenic cycling treatment(DCT). Results indicate that there are significant gains in yield strength(YS) and ultimate tensile strength(UTS) of the sand-cast GW63 alloy after DCET, whereas the T6 state alloy undergoes a different variation in mechanical properties. However, no appreciable influence is revealed on the mechanical properties of the tested GW63 alloys after DCT. Meanwhile, the DCT and DCET have no obvious effects on the fracture morphology. The DCT enhances the precipitation kinetics via providing favorable nucleation sites for the precipitation of second phases. The elevated temperature process of DCET plays a crucial role in improving the aging-hardening responses and releasing the stress concentration brought by DCT to a great extent, leading to overcome the obstacle of essential phase transformation. The changes in mechanical properties are primarily attributed to the phase transformation of the studied alloys during DCET.