Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
The Antarctic Bottom Water formation site Vincennes Bay,East Antarctica is experiencing a substantial intrusion of modified Circumpolar Deep Water(mCDW),which may inhibit the formation of Dense Shelf Water(DSW)and dri...The Antarctic Bottom Water formation site Vincennes Bay,East Antarctica is experiencing a substantial intrusion of modified Circumpolar Deep Water(mCDW),which may inhibit the formation of Dense Shelf Water(DSW)and drive basal melting of the ice shelves.Based on hydrographic data obtained from March to November in 2012,we evaluated the spatial spread of mCDW over the continental shelf region of Vincennes Bay and the associated temporal evolution of water properties,as well as the sea ice formation effect on water column in the coastal polynya.Results show that two branches of mCDW occupied the deep layers of the continental shelf,distinguished by the potential density(smaller than 27.8 kg/m 3 or not)when potential temperatureθ=0.5°C in theθ-salinity space.The warmer and less dense branch observed on the east plateau,accessed the eastern ice shelves in the coastal polynya to drive basal melting of ice shelves.In contrast,the other colder and denser branch in the mid-depression reached the western Underwood Ice Shelf.DSW formation was detectable in the coastal polynya during September-November,proving the occurrence of deep convection.Surface heat loss and brine rejection during the intensive sea ice formation contributed to the destratification of the water column in the coastal polynya.It was estimated that at least 1.11±0.79 TW heat carried by mCDW into the inner part of the polynya.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
The melting of the West Antarctic Ice Shelf has increased since the 1990s,driven by the relatively warm Circumpolar Deep Water(CDW)that penetrates into the West Antarctic Ice Shelf cavities through submarine glacial t...The melting of the West Antarctic Ice Shelf has increased since the 1990s,driven by the relatively warm Circumpolar Deep Water(CDW)that penetrates into the West Antarctic Ice Shelf cavities through submarine glacial troughs across the continental shelf.In this study,temperature,salinity,and current velocity data obtained by the Chinese National Antarctic Research Expedition in the Dotson-Getz Trough(DGT)shows clear differences in distribution of modified Circumpolar Deep Water(mCDW)in the summers of 2020 and 2022.Combined with contemporaneous wind data and additional temperature and salinity data from instrumented seals,the processes and mechanisms responsible for this variation are discussed.Compared with 2020,there is a significant increase in mCDW thickness in 2022,with a doubling of total heat content as the mCDW inflow path across the DGT shifts towards the eastern bank.We propose that a southward shift in the westerly winds in the summer of 2022 moved the upper oceanic divergence zone southward towards the continental slope,promoting the upwelling of mCDW above 500 m.Concurrently,stronger westerly winds over the continental slope strengthened the eastward undercurrent,increasing the transport of this mCDW and its associated heat content to the DGT through Ekman dynamics.These observations show there is strong interannual variability in the strength,path and extent of mCDW inflows to the DGT and that care must be taken when planning observation programs for long-term monitoring of the oceanic heat input to the ice shelves of this globally significant region.展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indis...The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.展开更多
Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were ...Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were used to determine the characteristics of water masses,turbulent mixing,and flows in the Preparis Channel.The unprecedented short-term mooring data reveal that a deep current in the deep narrow passage(below 400 m)of the Preparis Channel flows toward the Bay of Bengal(BoB)with a mean along-stream velocity of 25.26 cm/s at depth of 540 m;above the deep current,there are a relatively weak current flows toward the AS with a mean along-stream velocity of 15.46 cm/s between 500 m and 520 m,and another weak current flows toward the BoB between 430 m and 500 m.Thus,a sandwiched vertical structure of deep currents(below 400 m)is present in the Preparis Channel.The volume transport below 400 m is 0.06 Sv(1 Sv=106 m^(3)/s)from the AS to the BoB.In the upper layer(shallower than 300 m),the sea water of the AS is relatively warmer and fresher than that in the BoB,indicating a strong exchange through the channel.Microstructure profiler observations reveal that the turbulent diffusivity in the upper layer of the Preparis Channel reaches O(10−4 m^(2)/s),one order larger than that in the interior of the BoB and over the continental slope of the northern AS.We speculate that energetic high-mode internal tides in the Preparis Channel contribute to elevated turbulent mixing.In addition,a local“hotspot”of turbidity is identified at the deep mooring site,at depth of about 100 m,which corresponds to the location of elevated turbulent mixing in the Preparis Channel.展开更多
Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa...Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.展开更多
With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region....With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region. This paper details lessons learned from the successful field deployment of AA LDHI and proper implementation strategies used for 3 different practical fields as case studies in the Gulf of Mexico. From the 3 field experiences, the AA LDHI has been used to replace the conventional thermodynamic hydrate inhibitor due to its numerous benefits during steady state operations and transition operations where AA LDHI is injected prior to extended shut in and restart for fields producing at low water cut. However, the strategy to develop a cost effective chemical management of hydrates for fields producing at high water cut is by pumping methanol or diesel to push down the wellbore fluid below the mud line during planned and unplanned shut-ins to delay water production, it also secures the riser with non hydrate fluids. This illustrates how the AA LDHIs are used in conjunction with more conventional hydrate management approaches to reach an optimal cost effective field hydrate management solution. However, this shows that the key to overall success of hydrate prevention is a full integration of a good front end design, a comprehensive deployment and an effective down hole monitoring system.展开更多
Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea....Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate.展开更多
A novel expandable conductor was designed and applied in deep-water drilling to improve the vertical and lateral bearing capacity with a significant reduction of conductor jetting depth and soaking time. The vertical ...A novel expandable conductor was designed and applied in deep-water drilling to improve the vertical and lateral bearing capacity with a significant reduction of conductor jetting depth and soaking time. The vertical and lateral bearing capability of expandable conductors was depicted based on the ultimate subgrade reaction method and pile foundation bearing theory. The load-bearing characteristics of a laboratory-scale expandable conductor were analyzed through laboratory experiments. The serial simulation experiments are accomplished to study the bearing characteristics(vertical ultimate bearing capacity, lateral soil pressure, and lateral displacement) during the conductor soaking process. The laboratory experimental results show that the larger the length and thickness of expandable materials are,the higher the bearing capacity of the wellhead will be. During the conductor soaking process, the soil pressure around the three expandable conductors increases faster, strings representing a stronger squeezing effect and resulting in higher vertical bearing capacity. Furthermore, the lateral displacement of novel expandable conductor is smaller than that of the conventional conductor. All the advantages mentioned above contributed to the reduction of conductor’s jetting depth and soaking time. Lastly, the application workflow of a novel expandable deep-water drilling conductor was established and the autonomous expandable conductor was successfully applied in the South China Sea with a significant reduction of conductor’s jetting depth and soaking time. According to the soil properties and designed installation depth of the surface conductor, the arrangement of expandable materials should be designed reasonably to meet the safety condition and reduce the construction cost of the subsea wellhead.展开更多
The spatial correlations of acoustic field have important implications for underwater target detection and other ap- plications in deep water. In this paper, the spatial correlations of the high intensity zone in the ...The spatial correlations of acoustic field have important implications for underwater target detection and other ap- plications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterbome modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth.展开更多
Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest ...Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.展开更多
A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundw...A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundwater over-exploitation and the resultant environmental—geological problems on a regional scale,the over-exploitation of groundwater has been assessed by way of the groundwater exploitation potential coefficient(i.e.,the ratio of exploitable amount of deep groundwater to current exploitation), cumulative land subsidence,and long-term average lowering rate of the groundwater table.There is a good correlation among the results calculated by the different methods.On a regional scale,deep groundwater has been over-exploited and there is no further exploitation potential under the current conditions.The groundwater exploitation degree index takes the exploitation in 2003 as the reference for the calculations, so the results mainly reflect the degree of current groundwater exploitation.The results of over-exploitation of deep groundwater obtained by land subsidence data and long-term average rate of depression of the water table mainly reflect environmental—geological problems caused by exploitation of deep groundwater.展开更多
Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has ...Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.展开更多
Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some d...Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.展开更多
Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the res...Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semiquantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials(core, outcrop, logging and seismic data),employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral,indented and swing stacking in section view. Based on external morphological characteristics and boundaries,channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.展开更多
A new species of deep-water barnacle that belongs to the family Scalpellidae is described from the South China Sea. A rcoscalpellum liui sp. nov. is morphologically similar to A rcoscalpellum gryllum Zevina,but differ...A new species of deep-water barnacle that belongs to the family Scalpellidae is described from the South China Sea. A rcoscalpellum liui sp. nov. is morphologically similar to A rcoscalpellum gryllum Zevina,but differs from the latter by the absence of longitudinal striae on the capitular plates and the presence of caudal appendages with few terminal setae.展开更多
To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design o...To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.展开更多
In this paper, we tested the hydrodynamic characteristics of a new, double-winged otter board that consists of a forewing, a leading edge slat and a trailing edge flap. Flume experiments were conducted in a circulatin...In this paper, we tested the hydrodynamic characteristics of a new, double-winged otter board that consists of a forewing, a leading edge slat and a trailing edge flap. Flume experiments were conducted in a circulating flume tank by using a model with an aspect ratio(AR) of 0.85 and a horizontal planform area( S) of 0.09 m^2. The results indicated that the critical angle( α_(cr)) of the model was 44°, whereas the maximum lift coefficient( C_(Lmax)) was up to 1.715, and the door efficiency( K) was 1.122. The attack angle( α) ranged from 30° to 48° and from 10° to 46° when the lift coefficient( C_L) and door efficiency( K) were greater than 1.2 and 1.0, respectively. To compare the difference between double-winged otter board and traditional Morgere Polyvalent Ovale, same model of Morgere Polyvalent Ovale was also tested under the same experimental conditions. The critical angle( α_(cr)) and maximum of lift coefficient( C_(Lmax)) of the doublewinged otter board were 37.5% and 14.6% larger than those of the Morgere Polyvalent Ovale. Therefore, we concluded that the novel, double-winged otter board was more suitable for bottom trawling fisheries in the deep water of the Mauretania Sea due to its better hydrodynamic characteristics and stability.展开更多
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
基金Supported by the National Natural Science Foundation of China(No.42130402)the International Science and Technology Cooperation Key Special Project of the National Key Research and Development Program of China(No.2023YFE0104500)。
文摘The Antarctic Bottom Water formation site Vincennes Bay,East Antarctica is experiencing a substantial intrusion of modified Circumpolar Deep Water(mCDW),which may inhibit the formation of Dense Shelf Water(DSW)and drive basal melting of the ice shelves.Based on hydrographic data obtained from March to November in 2012,we evaluated the spatial spread of mCDW over the continental shelf region of Vincennes Bay and the associated temporal evolution of water properties,as well as the sea ice formation effect on water column in the coastal polynya.Results show that two branches of mCDW occupied the deep layers of the continental shelf,distinguished by the potential density(smaller than 27.8 kg/m 3 or not)when potential temperatureθ=0.5°C in theθ-salinity space.The warmer and less dense branch observed on the east plateau,accessed the eastern ice shelves in the coastal polynya to drive basal melting of ice shelves.In contrast,the other colder and denser branch in the mid-depression reached the western Underwood Ice Shelf.DSW formation was detectable in the coastal polynya during September-November,proving the occurrence of deep convection.Surface heat loss and brine rejection during the intensive sea ice formation contributed to the destratification of the water column in the coastal polynya.It was estimated that at least 1.11±0.79 TW heat carried by mCDW into the inner part of the polynya.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
基金This work is supported by Chinese Arctic and Antarctic Administration(Grant no.IRASCC2020-2022)National Key R&D Program of China(Grant no.2018YFA0605701).
文摘The melting of the West Antarctic Ice Shelf has increased since the 1990s,driven by the relatively warm Circumpolar Deep Water(CDW)that penetrates into the West Antarctic Ice Shelf cavities through submarine glacial troughs across the continental shelf.In this study,temperature,salinity,and current velocity data obtained by the Chinese National Antarctic Research Expedition in the Dotson-Getz Trough(DGT)shows clear differences in distribution of modified Circumpolar Deep Water(mCDW)in the summers of 2020 and 2022.Combined with contemporaneous wind data and additional temperature and salinity data from instrumented seals,the processes and mechanisms responsible for this variation are discussed.Compared with 2020,there is a significant increase in mCDW thickness in 2022,with a doubling of total heat content as the mCDW inflow path across the DGT shifts towards the eastern bank.We propose that a southward shift in the westerly winds in the summer of 2022 moved the upper oceanic divergence zone southward towards the continental slope,promoting the upwelling of mCDW above 500 m.Concurrently,stronger westerly winds over the continental slope strengthened the eastward undercurrent,increasing the transport of this mCDW and its associated heat content to the DGT through Ekman dynamics.These observations show there is strong interannual variability in the strength,path and extent of mCDW inflows to the DGT and that care must be taken when planning observation programs for long-term monitoring of the oceanic heat input to the ice shelves of this globally significant region.
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.
基金the Natural Science Foundation of Shandong Province of China(No.ZR2022MA051)the China Postdoctoral Science Foundation(No.2020M670891)the SDUST Research Fund(No.2019TDJH103)。
文摘The inhomogeneous sound speed in seawater causes refraction of sound waves,and the elimination of the refraction effect is essential to the accuracy of underwater acoustic positioning.The raytracing method is an indispensable tool for effectively handling problems.However,this method has a conflict between localization accuracy and computational quantity.The equivalent sound speed profile(ESSP)method uses a simple sound speed profile(SSP)instead of the actual complex SSP,which can improve positioning precision but with residual error.The residual error is especially non-negligible in deep water and at large beam incidence angles.By analyzing the residual error of the ESSP method through a simulation,an empirical formula of error is presented.The data collected in the sailing circle mode(large incidence angle)of the South China Sea are used for verification.The experiments show that compared to the ESSP method,the improved algorithm has higher positioning precision and is more efficient than the ray-tracing method.
基金The Global Change and Air-Sea Interaction II Project under contract Nos GASI-01-EIND-STwin and GASI-04-WLHY-03the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources under contract No.JB2106+2 种基金the Global Change and Air-Sea Interaction II Project under contract No.GASI-04-WLHY-01the Leading Talents of Science and Technology Innovation in the Zhejiang Provincial Ten Thousand Talents Program under contract No.2020R52038the Oceanic Sustainability-Based Marine Science and Technology Cooperation in Maritime Silk Road and Island Countries.
文摘Preparis Channel is the very important exchange path of energy and materials between the northern Bay of Bengal and Andaman Sea(AS).A set of hydrographic measurements,a microstructure profiler,and a deep mooring were used to determine the characteristics of water masses,turbulent mixing,and flows in the Preparis Channel.The unprecedented short-term mooring data reveal that a deep current in the deep narrow passage(below 400 m)of the Preparis Channel flows toward the Bay of Bengal(BoB)with a mean along-stream velocity of 25.26 cm/s at depth of 540 m;above the deep current,there are a relatively weak current flows toward the AS with a mean along-stream velocity of 15.46 cm/s between 500 m and 520 m,and another weak current flows toward the BoB between 430 m and 500 m.Thus,a sandwiched vertical structure of deep currents(below 400 m)is present in the Preparis Channel.The volume transport below 400 m is 0.06 Sv(1 Sv=106 m^(3)/s)from the AS to the BoB.In the upper layer(shallower than 300 m),the sea water of the AS is relatively warmer and fresher than that in the BoB,indicating a strong exchange through the channel.Microstructure profiler observations reveal that the turbulent diffusivity in the upper layer of the Preparis Channel reaches O(10−4 m^(2)/s),one order larger than that in the interior of the BoB and over the continental slope of the northern AS.We speculate that energetic high-mode internal tides in the Preparis Channel contribute to elevated turbulent mixing.In addition,a local“hotspot”of turbidity is identified at the deep mooring site,at depth of about 100 m,which corresponds to the location of elevated turbulent mixing in the Preparis Channel.
基金The National Natural Science Foundation of China under contract No.42202157the China National Offshore Oil Corporation Co.,Ltd.Major Production and Scientific Research Program under contract No.2019KT-SC-22。
文摘Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.
文摘With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region. This paper details lessons learned from the successful field deployment of AA LDHI and proper implementation strategies used for 3 different practical fields as case studies in the Gulf of Mexico. From the 3 field experiences, the AA LDHI has been used to replace the conventional thermodynamic hydrate inhibitor due to its numerous benefits during steady state operations and transition operations where AA LDHI is injected prior to extended shut in and restart for fields producing at low water cut. However, the strategy to develop a cost effective chemical management of hydrates for fields producing at high water cut is by pumping methanol or diesel to push down the wellbore fluid below the mud line during planned and unplanned shut-ins to delay water production, it also secures the riser with non hydrate fluids. This illustrates how the AA LDHIs are used in conjunction with more conventional hydrate management approaches to reach an optimal cost effective field hydrate management solution. However, this shows that the key to overall success of hydrate prevention is a full integration of a good front end design, a comprehensive deployment and an effective down hole monitoring system.
基金Supported by the National Key Research and Development Program of China(No.2018YFC0309800)the National Natural Science Foundation of China(Nos.42176021,91858203)+1 种基金the Open Project Program of State Key Laboratory of Tropical Oceanography(No.LTOZZ2001)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)。
文摘Upper Circumpolar Deep Water(UCDW)and North Pacifi c Deep Water(NPDW)coexist in the upper deep layer(i.e.,with a 1.2-2.0-℃potential temperature range and a 2000-4100-dbar pressure range)of the Eastern Philippine Sea.They have similar properties in potential temperature and salinity,while have a signifi cant diff erence in dissolved silicate.Based on the repeated observations along a 137°E transect from the World Ocean Database(WOD18),this study revealed the interannual variability of dissolved silicate in the upper deep layer of the Eastern Philippine Sea.Dissolved silicate increased in 1995,1996,2005,2006,and 2007,and decreased in 1997,2000,2001,2002,and 2004.Composition analysis showed that the large diff erence between positive and negative dissolved silicate anomalies occurred mainly at~15°N and north of 25°N,with the concentration reaching 4.25μmol/g.Further analysis indicated that the interannual dissolved silicate variability was related to the zonal current variation in the upper deep layer.The relatively strong(weak)westward current transport increased(decreased)NPDW to the Eastern Philippine Sea,thereby resulting in increased(decreased)dissolved silicate.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51434009 and 51221003)。
文摘A novel expandable conductor was designed and applied in deep-water drilling to improve the vertical and lateral bearing capacity with a significant reduction of conductor jetting depth and soaking time. The vertical and lateral bearing capability of expandable conductors was depicted based on the ultimate subgrade reaction method and pile foundation bearing theory. The load-bearing characteristics of a laboratory-scale expandable conductor were analyzed through laboratory experiments. The serial simulation experiments are accomplished to study the bearing characteristics(vertical ultimate bearing capacity, lateral soil pressure, and lateral displacement) during the conductor soaking process. The laboratory experimental results show that the larger the length and thickness of expandable materials are,the higher the bearing capacity of the wellhead will be. During the conductor soaking process, the soil pressure around the three expandable conductors increases faster, strings representing a stronger squeezing effect and resulting in higher vertical bearing capacity. Furthermore, the lateral displacement of novel expandable conductor is smaller than that of the conventional conductor. All the advantages mentioned above contributed to the reduction of conductor’s jetting depth and soaking time. Lastly, the application workflow of a novel expandable deep-water drilling conductor was established and the autonomous expandable conductor was successfully applied in the South China Sea with a significant reduction of conductor’s jetting depth and soaking time. According to the soil properties and designed installation depth of the surface conductor, the arrangement of expandable materials should be designed reasonably to meet the safety condition and reduce the construction cost of the subsea wellhead.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘The spatial correlations of acoustic field have important implications for underwater target detection and other ap- plications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterbome modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth.
基金Project supported by the Program of One Hundred Talented People of the Chinese Academy of SciencesNational Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.
基金sponsored by a research grant from the National Natural Foundation Committee:Groundwater Crisis Critical Signal and Groundwater Resources Adjustment and Control of State Project No.973(Grant No.2010CB428806)
文摘A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundwater over-exploitation and the resultant environmental—geological problems on a regional scale,the over-exploitation of groundwater has been assessed by way of the groundwater exploitation potential coefficient(i.e.,the ratio of exploitable amount of deep groundwater to current exploitation), cumulative land subsidence,and long-term average lowering rate of the groundwater table.There is a good correlation among the results calculated by the different methods.On a regional scale,deep groundwater has been over-exploited and there is no further exploitation potential under the current conditions.The groundwater exploitation degree index takes the exploitation in 2003 as the reference for the calculations, so the results mainly reflect the degree of current groundwater exploitation.The results of over-exploitation of deep groundwater obtained by land subsidence data and long-term average rate of depression of the water table mainly reflect environmental—geological problems caused by exploitation of deep groundwater.
基金financially supported by the National Natural Science Foundation of China (41371053, 31270501)the National Science and Technology Planning Project (2011BAC07B02)+1 种基金the Strategic Forerunner Project of Science and Technology, Chineses Academy of Sciences (XDA05050201-04-01)the Special Scientific Research Fund (201109025-2)
文摘Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.
基金The Major State Basic Research Development Program (973 Program) under contract No. 2009CB219402
文摘Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.
基金supported by the National Major Scientific and Technological Special Project during the Thirteenth Five-year Plan Period (2016ZX05033-003-002)the Project of Sinopec Science and Technology Development Department (G580015-ZS-KJB016)
文摘Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semiquantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials(core, outcrop, logging and seismic data),employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral,indented and swing stacking in section view. Based on external morphological characteristics and boundaries,channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA1103040102)the National Natural Science Foundation of China(No.31172054)
文摘A new species of deep-water barnacle that belongs to the family Scalpellidae is described from the South China Sea. A rcoscalpellum liui sp. nov. is morphologically similar to A rcoscalpellum gryllum Zevina,but differs from the latter by the absence of longitudinal striae on the capitular plates and the presence of caudal appendages with few terminal setae.
基金Supported by the NSFC under Grant No. 50679051 and NO.50639030.
文摘To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.
基金Supported by the Technological Research on Reforming Otter Boards of Bottom Trawl in Mauretania and Guinea(China National Fisheries Corporation,CNFC)Technological Research on Transformation and Upgrading of Shrimp Trawl in Sierra Leone(CNFC)Far Sea Fisheries Resources Monitoring and Assessment of South China Sea(No.2013050212)
文摘In this paper, we tested the hydrodynamic characteristics of a new, double-winged otter board that consists of a forewing, a leading edge slat and a trailing edge flap. Flume experiments were conducted in a circulating flume tank by using a model with an aspect ratio(AR) of 0.85 and a horizontal planform area( S) of 0.09 m^2. The results indicated that the critical angle( α_(cr)) of the model was 44°, whereas the maximum lift coefficient( C_(Lmax)) was up to 1.715, and the door efficiency( K) was 1.122. The attack angle( α) ranged from 30° to 48° and from 10° to 46° when the lift coefficient( C_L) and door efficiency( K) were greater than 1.2 and 1.0, respectively. To compare the difference between double-winged otter board and traditional Morgere Polyvalent Ovale, same model of Morgere Polyvalent Ovale was also tested under the same experimental conditions. The critical angle( α_(cr)) and maximum of lift coefficient( C_(Lmax)) of the doublewinged otter board were 37.5% and 14.6% larger than those of the Morgere Polyvalent Ovale. Therefore, we concluded that the novel, double-winged otter board was more suitable for bottom trawling fisheries in the deep water of the Mauretania Sea due to its better hydrodynamic characteristics and stability.