The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen s...The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.展开更多
The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corros...The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants. The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600>SS316L>graphite>SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.展开更多
This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into acc...This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil.展开更多
The paper briefly describes the range and methods of the research on the stability of frozen wall. Using the Back Analysis Method combining with the model test of frozen wall, the comprebensive study on the stability ...The paper briefly describes the range and methods of the research on the stability of frozen wall. Using the Back Analysis Method combining with the model test of frozen wall, the comprebensive study on the stability of frozen wail is firstly carried out by the authors. Finally, a new viewpoint of adopting limited strain as the major eriteria of stability in frozen soil engineering is proposed.展开更多
The Freeze-Sealing Pipe-Roof(FSPR)method,which has been applied for the first time in the Gongbei Tunnel of the Hong Kong-Zhuhai-Macao Bridge,is a new approach of tunnel pre-support that allows flexible adjustment of ...The Freeze-Sealing Pipe-Roof(FSPR)method,which has been applied for the first time in the Gongbei Tunnel of the Hong Kong-Zhuhai-Macao Bridge,is a new approach of tunnel pre-support that allows flexible adjustment of freeze tube arrangement and can be adapted to different environmental conditions.When the FSPR method is used to construct shallow burial submerged tunnels,the frozen wall to hold back groundwater during excavation will be weakened by air and water flows inside and outside the tunnel,and its waterproof performance needs to be further investigated.In this paper,a two-dimensional numerical model of the temperature field considering excavation and moving water boundary is established based on the preliminary design scheme and in-situ conditions and is used to analyze the variation in frozen curtain properties with various active freezing times during excavation.The results show that excavation has a weakening effect on both sides of the frozen wall,with a greater effect on the inner side,and a positive temperature appears in the local area inside the jacked pipe.The concrete fill in the jacked pipe obviously improves the freezing efficiency,and the tunnel excavation after 60 days of active freezing in the interval filling mode can ensure that the frozen soil thickness at the thinnest segment exceeds 2 m,i.e.,the design requirement.In practice,the active freezing time can be extended appropriately to reduce the influence of river water flow above the tunnel.The study serves as a technical reference for the design and implementation of similar projects.展开更多
基金supported by the National Natural Science Foundation of China (No. 50578120)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA11Z118)
文摘The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Science(No.XDA02030000)
文摘The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants. The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600>SS316L>graphite>SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.
文摘This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil.
文摘The paper briefly describes the range and methods of the research on the stability of frozen wall. Using the Back Analysis Method combining with the model test of frozen wall, the comprebensive study on the stability of frozen wail is firstly carried out by the authors. Finally, a new viewpoint of adopting limited strain as the major eriteria of stability in frozen soil engineering is proposed.
基金This research was supported by the National Natural Science Foundation of China(No.52108386)。
文摘The Freeze-Sealing Pipe-Roof(FSPR)method,which has been applied for the first time in the Gongbei Tunnel of the Hong Kong-Zhuhai-Macao Bridge,is a new approach of tunnel pre-support that allows flexible adjustment of freeze tube arrangement and can be adapted to different environmental conditions.When the FSPR method is used to construct shallow burial submerged tunnels,the frozen wall to hold back groundwater during excavation will be weakened by air and water flows inside and outside the tunnel,and its waterproof performance needs to be further investigated.In this paper,a two-dimensional numerical model of the temperature field considering excavation and moving water boundary is established based on the preliminary design scheme and in-situ conditions and is used to analyze the variation in frozen curtain properties with various active freezing times during excavation.The results show that excavation has a weakening effect on both sides of the frozen wall,with a greater effect on the inner side,and a positive temperature appears in the local area inside the jacked pipe.The concrete fill in the jacked pipe obviously improves the freezing efficiency,and the tunnel excavation after 60 days of active freezing in the interval filling mode can ensure that the frozen soil thickness at the thinnest segment exceeds 2 m,i.e.,the design requirement.In practice,the active freezing time can be extended appropriately to reduce the influence of river water flow above the tunnel.The study serves as a technical reference for the design and implementation of similar projects.