期刊文献+
共找到287,968篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Texture on Deep-Drawing Property of Air-Condition Aluminium 1050H19 Foils
1
作者 JIZe-sheng WANGTao +2 位作者 WANGGuo-jun ZHANGTao CHIDa-zhao 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期252-255,共4页
The textures induced by deformation processes of different crafts in air-condition used aluminium 1050H19 foils were measured by using X-ray goniometer. Combining with TEM analysis, effect of texture on deep-drawing p... The textures induced by deformation processes of different crafts in air-condition used aluminium 1050H19 foils were measured by using X-ray goniometer. Combining with TEM analysis, effect of texture on deep-drawing property was discussed. It is show that deformation textures in the specimens, on which four types of rolling-crafts are carried out respectively, are all typical Cu components, and recrystallized R-, Cube-texture don’t exist. Cu-texture is still the predominant component with different orientation density according to different rolling-craft. To specimens which are prone to cracking, their orientation densities of Cu-textures are higher, their textures are stronger and they contain P- and Goss-texture, which are harder to be deformed. The analyses indicat that with the decrease in the rate of reduction/rolling-time and the execution of intermediate holding, textures that are harder to be deformed are eliminated and orientation density of Cu-texture is weakened. Thus, deep-drawing property of aluminium foils is improved. 展开更多
关键词 铝1050H19箔 深拉 变形处理 TEM X射线测角仪
下载PDF
Molecular simulation study of the microstructures and properties of pyridinium ionic liquid[HPy][BF_(4)]mixed with acetonitrile
2
作者 XU Jian-Qiang MA Zhao-Peng +2 位作者 CHENG Si LIU Zhi-Cong ZHU Guang-Lai 《原子与分子物理学报》 CAS 北大核心 2025年第4期27-32,共6页
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo... The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently. 展开更多
关键词 Pyridinium ionic liquids Thermodynamic properties Molecular dynamics simulation Radial distribution functions
下载PDF
Research on the Construction of Intellectual Property System and Optimization of Business Environment in China
3
作者 Zhang Xue Lyu Guofu 《科技与法律(中英文)》 2025年第1期125-137,共13页
With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an import... With the rapid development of globalization and information technology,intellectual property has been one of the key drivers of economic growth,and the construction of intellectual property system has become an important criterion for measuring the quality of business environment.This article is intended to explore the current status of intellectual property system construction in China,the challenges,and its relationship with the business environment,to propose the corresponding countermeasures and suggestions.The study finds that the legal system of intellectual property in China is gradually improving,and judicial and administrative protection are continuously strengthened.However,the challenges still remain such as frequent infringements,rights hard to protect and insufficient international cooperation.These issues not only affect the legitimate rights and interests of innovation entities,but also for the market fairness and the level of the business environment.Therefore,this article proposes that strengthening the perfection of the intellectual property legal system,enhancing intellectual property services and support capabilities,strengthening international cooperation and exchanges,and accelerating the cultivation of composite talents.It aims to provide theoretical references for the construction of intellectual property system and the optimization of the business environment,promote the high-quality development of economy and enhance the global competitiveness of the country. 展开更多
关键词 intellectual property business environment system construction economic development
下载PDF
GENERAL COMPUTER MODEL FOR SHEET METAL DEEP-DRAWING PROCESS
4
作者 邓陟 王先进 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1995年第1期43+35-43,共10页
A new comprehensive computer model was developed for sheet metal deep-drawing process, based on the theory of plastic anisotropy and under consideration of the effects of bending, blank-holding force, strain-hardening... A new comprehensive computer model was developed for sheet metal deep-drawing process, based on the theory of plastic anisotropy and under consideration of the effects of bending, blank-holding force, strain-hardening, the variation of thickness and tooling geometry. The model could be used to simulate the deforming stages of deep-drawing process and get the continuous distributions of stress and strain from the radial drawing region of material over a die and the stretch-forming region of material over a punch. It is concluded that the total strain theory can be used as a substitute for the incremental strain theory to analyse the force and deformation in sheet metal deep-drawing process. In addition, the effect of bending was also obtained. 展开更多
关键词 sheet metal forming deep-drawing computer simulation
下载PDF
Prediction and Control of Both Wrinkle Limit and Fracture Limit on Cylindrical Cup Deep-Drawing 被引量:1
5
作者 Junxiang Lei(Department of Mechanical Enginecring, Yantai University, Yantai264005,China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第4期237-240,250,共5页
hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flan... hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flange deformation zone and the maximum radial tensile stress formula in the cylinder-wall pass force zone are given, and both theno-wrinkle limitl criterion and no-fracture limit criterion are put froward. The prediction and control criterion anddiagram of both the wrinkle limit and fracture limit on cylindrical cup deep-drawing, the most suitable formingzone and the limit deep-drawing coefficient are obtained. Comparing with present experience formulae and actualproduct's production, this prediction and control are quite accurate. 展开更多
关键词 cylindrical cup deep-drawing wrinkle limit fracture limit deep-drawing limit
下载PDF
Prediction and Control of both Wrinkle Limit and Fracture Limiton Cylindrical Cup Deep-drawing(Ⅱ) 被引量:1
6
作者 Junxiang Lei Yonglin Kang(Department of Mechanical Engineering, Yantai University, Yantai 264005, China)(Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第3期201-204,共4页
The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are ... The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are also given. The results show that it is suitable for no-flange cylindrical cup deep-drawing, narrow-flange cylindrical cup deep-drawing, wide-flange cylindrical cup deep-drawing/expanding compound forming and rigid punch expanding forming. 展开更多
关键词 cylindrical cup wrinkle limit fracture limit deep-drawing expanding forming compound forming
下载PDF
Properties and Characteristics of Regolith-Based Materials for Extraterrestrial Construction 被引量:2
7
作者 Cheng Zhou Yuyue Gao +4 位作者 Yan Zhou Wei She Yusheng Shi Lieyun Ding Changwen Miao 《Engineering》 SCIE EI CAS CSCD 2024年第6期159-181,共23页
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it... The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments. 展开更多
关键词 Extraterrestrial construction Characterization Mechanical property Thermal property Optical property Radiation-shielding
下载PDF
Physical,mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant 被引量:2
8
作者 Wenbin Han Yan Zhou +2 位作者 Lixiong Cai Cheng Zhou Lieyun Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1243-1257,共15页
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th... Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases. 展开更多
关键词 Lunar base Lunar regolith simulant Vacuum sintering Physical properties Mechanical properties Thermal properties
下载PDF
Simulation of annealing process effect on texture evolution of deep-drawing sheet Stl5
9
作者 Jinghong Sun Yazheng Liu Leyu Zhou 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期512-516,共5页
A two-dimensional cellular automaton method was used to simulate grain growth during the recrystallization annealing of deep-drawing sheet St 15, taking the simulated result of recrystallization and the experimental r... A two-dimensional cellular automaton method was used to simulate grain growth during the recrystallization annealing of deep-drawing sheet St 15, taking the simulated result of recrystallization and the experimental result of the annealing texture of deepdrawing sheet St15 as the initial condition and reference. By means of computer simulation, the microstructures and textures of different periods of grain growth were predicted. It is achieved that the grain size, shape and texture become stable after the grain growth at a constant temperature of 700℃ for 10 h, and the advantaged texture components { 111 } 〈 110 〉 and { 111 } 〈 112〉 are dominant. 展开更多
关键词 cellular automaton deep-drawing sheet TEXTURE SIMULATION
下载PDF
DEEP-DRAWING PROCESS ANALYSIS OF ELLIPTIC CUPS BY RIGID-PLASTIC FEM
10
作者 Chang, Zhihua Ma, Yanwei +1 位作者 Huang, Shangyu Jiang, Kuihua 《中国有色金属学会会刊:英文版》 EI CSCD 1994年第2期61-66,共6页
DEEP-DRAWINGPROCESSANALYSISOFELLIPTICCUPSBYRIGID-PLASTICFEMDEEP-DRAWINGPROCESSANALYSISOFELLIPTICCUPSBYRIGID-... DEEP-DRAWINGPROCESSANALYSISOFELLIPTICCUPSBYRIGID-PLASTICFEMDEEP-DRAWINGPROCESSANALYSISOFELLIPTICCUPSBYRIGID-PLASTICFEM¥Chang,... 展开更多
关键词 ELLIPTIC cups deep-drawing formation LIMIT RIGID-PLASTIC FINITE ELEMENT method
下载PDF
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys 被引量:3
11
作者 Yaowei Wang Tian Xie +4 位作者 Qingli Tang Mingxu Wang Tao Ying Hong Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1406-1418,共13页
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi... Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems. 展开更多
关键词 Mg intermetallics Corrosion property HIGH-THROUGHPUT Density functional theory Machine learning
下载PDF
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing 被引量:1
12
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing
13
作者 Junxiang YonglinKang 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期360-362,共3页
On the basis of the criterion of no-wrinkle, the principle and method of prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing are put forward, and proved it's exp... On the basis of the criterion of no-wrinkle, the principle and method of prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing are put forward, and proved it's expedience and practicability. They are suitable for assessment of lubricant properties. Friction coefficient and forming force are a function of material parameter, design parameter and process parameter, especially relative prevent wrinkle blank-holder force. Product of both friction coefficient and prevent wrinkle blank-holder force is only function of process parameter after determining material parameter and design parameter. 展开更多
关键词 deep-drawing friction coefficient forming force prediction and determination
下载PDF
Tetrahedral framework nucleic acids/hyaluronic acidmethacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing 被引量:1
14
作者 Cai Qi Qiang Sun +4 位作者 Dexuan Xiao Mei Zhang Shaojingya Gao Bin Guo Yunfeng Lin 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第3期436-447,共12页
Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with add... Bacterial resistance and excessive inflammation are common issues that hinder wound healing.Antimicrobial peptides(AMPs)offer a promising and versatile antibacterial option compared to traditional antibiotics,with additional anti-inflammatory properties.However,the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation.TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs.Therefore,in this study,a composite hydrogel(HAMA/t-GL13K)was prepared via the photocross-linking method,in which tFNAs carry GL13K.The hydrogel was injectable,biocompatible,and could be instantly photocured.It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS.Thereby,the hydrogel inhibited bacterial infection,shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring.The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing. 展开更多
关键词 properties. HYDROGEL ANHYDRIDE
下载PDF
Effects of deformation temperatures on microstructures,aging behaviors and mechanical properties of Mg-Gd-Er-Zr alloys fabricated by hard-plate rolling 被引量:2
15
作者 Ke Liu Dalong Hu +4 位作者 Feng Lou Zijian Yu Shubo Li Xian Du Wenbo Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2345-2359,共15页
In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures... In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility. 展开更多
关键词 Mg-Gd-Er-Zr sheets Age hardening response PRECIPITATES Mechanical properties
下载PDF
FLANGE EARING AND ITS CONTROL ON DEEP-DRAWING OF ANISOTROPY CIRCULAR SHEETS
16
作者 Liu Yuqi Hu Ping Liu Junhua (Institute of Automobile Panel Forming Technique,Jilin University of Technology,Changchun 130025,China) 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第4期294-306,共13页
The Hill's quadric anisotropy yield function and the Barlat-Lian anisotropy yield func- tion describing well anisotropy sheet metal with stronger texture are introduced into a quadric-flow cor- ner constitutive th... The Hill's quadric anisotropy yield function and the Barlat-Lian anisotropy yield func- tion describing well anisotropy sheet metal with stronger texture are introduced into a quadric-flow cor- ner constitutive theory of elastic-plastic finite deformation suitable for deformation localization analy- sis.And then,the elastic-plastic large deformation finite element formulation based on the virtual power principle and the discrete Kirchhoff shell element model including the yield functions and the constitutive theory are established.The focus of the present research is on the numerical simulation of the flange earing of the deep-drawing of anisotropy circular sheets,based on the investigated results, the.schemes for controlling the flange earing are proposed. 展开更多
关键词 elastic-plastic large deformation discrete Kirchhoff shell element anisotropy yield function deep-drawing circular sheet flange earing
下载PDF
Machine learning applications on lunar meteorite minerals:From classification to mechanical properties prediction 被引量:1
17
作者 Eloy Peña-Asensio Josep M.Trigo-Rodríguez +2 位作者 Jordi Sort Jordi Ibáñez-Insa Albert Rimola 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1283-1292,共10页
Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments an... Amid the scarcity of lunar meteorites and the imperative to preserve their scientific value,nondestructive testing methods are essential.This translates into the application of microscale rock mechanics experiments and scanning electron microscopy for surface composition analysis.This study explores the application of Machine Learning algorithms in predicting the mineralogical and mechanical properties of DHOFAR 1084,JAH 838,and NWA 11444 lunar meteorites based solely on their atomic percentage compositions.Leveraging a prior-data fitted network model,we achieved near-perfect classification scores for meteorites,mineral groups,and individual minerals.The regressor models,notably the KNeighbor model,provided an outstanding estimate of the mechanical properties—previously measured by nanoindentation tests—such as hardness,reduced Young’s modulus,and elastic recovery.Further considerations on the nature and physical properties of the minerals forming these meteorites,including porosity,crystal orientation,or shock degree,are essential for refining predictions.Our findings underscore the potential of Machine Learning in enhancing mineral identification and mechanical property estimation in lunar exploration,which pave the way for new advancements and quick assessments in extraterrestrial mineral mining,processing,and research. 展开更多
关键词 METEORITES MOON MINERALOGY Machine learning Mechanical properties
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
18
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Pulsed current-assisted twelve-roll precision rolling deformation of SUS304 ultra-thin strips with exceptional mechanical properties 被引量:1
19
作者 Wanwan Fan Tao Wang +3 位作者 Jinxiong Hou Zhongkai Ren Qingxue Huang Guanghui Wu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期291-305,共15页
Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the ro... Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the rolling reduction rate of a conventionally rolled sample(at room temperature)is 33.8%,which can be increased to 41.5%by pulsed current-assisted rolling,enabling the formation of an ultra-thin strip with a size of 67.3μm in only one rolling pass.After three passes of pulsed current-assisted rolling,the thickness of the ultra-thin strip can be further reduced to 51.7μm.To clearly compare the effects of a pulsed current on the microstructure and mechanical response of the ultra-thin strip,ultra-thin strips with nearly the same thickness reduction were analyzed.It was found that pulsed current can reduce the degree of work-hardening of the rolled samples by promoting dislocation detachment,reducing the density of stacking faults,inhibiting martensitic phase transformation,and shortening the total length of grain boundaries.As a result,the ductility of ultra-thin strips can be effectively restored to approximately 16.3%while maintaining a high tensile strength of 1118 MPa.Therefore,pulsed current-assisted rolling deformation shows great potential for the formation of ultra-thin strips with a combination of high strength and ductility. 展开更多
关键词 pulsedcurrent-assisted SUS304 ultra-thinstrip rolling reductionrate WORK-HARDENING mechanical properties
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance 被引量:1
20
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部