期刊文献+
共找到19,634篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of annealing process effect on texture evolution of deep-drawing sheet Stl5
1
作者 Jinghong Sun Yazheng Liu Leyu Zhou 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期512-516,共5页
A two-dimensional cellular automaton method was used to simulate grain growth during the recrystallization annealing of deep-drawing sheet St 15, taking the simulated result of recrystallization and the experimental r... A two-dimensional cellular automaton method was used to simulate grain growth during the recrystallization annealing of deep-drawing sheet St 15, taking the simulated result of recrystallization and the experimental result of the annealing texture of deepdrawing sheet St15 as the initial condition and reference. By means of computer simulation, the microstructures and textures of different periods of grain growth were predicted. It is achieved that the grain size, shape and texture become stable after the grain growth at a constant temperature of 700℃ for 10 h, and the advantaged texture components { 111 } 〈 110 〉 and { 111 } 〈 112〉 are dominant. 展开更多
关键词 cellular automaton deep-drawing sheet TEXTURE SIMULATION
下载PDF
Effects of External Electric Field on AlN Precipitation and Recrystallization Texture of Deep-drawing 08Al Killed Steel Sheet 被引量:7
2
作者 Xiang ZHAO Zhuochao HU Liang ZUO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期747-750,共4页
The effects of an electric field on AIN precipitation and recrystallization texture were investigated. Cold-rolled 08Al killed steel sheets were annealed at 550℃ according to the two-step processes, for various maint... The effects of an electric field on AIN precipitation and recrystallization texture were investigated. Cold-rolled 08Al killed steel sheets were annealed at 550℃ according to the two-step processes, for various maintaining times, with and without applying an electric field. It was found that the electric field promotes the precipitation of the second phase (AlN particles), strengthens the γ-fiber and weakens the α-fiber texture component in the recrystallized specimens. A possible explanation for the reinforcement of γ-fiber texture by the electric field is that the second phase AIN particle promotes the growth of γ-fiber at the expense of differently oriented grains. 展开更多
关键词 Electric field annealing ALN Recrystallization texture 08Al killed steel sheet
下载PDF
FLANGE EARING AND ITS CONTROL ON DEEP-DRAWING OF ANISOTROPY CIRCULAR SHEETS
3
作者 Liu Yuqi Hu Ping Liu Junhua (Institute of Automobile Panel Forming Technique,Jilin University of Technology,Changchun 130025,China) 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第4期294-306,共13页
The Hill's quadric anisotropy yield function and the Barlat-Lian anisotropy yield func- tion describing well anisotropy sheet metal with stronger texture are introduced into a quadric-flow cor- ner constitutive th... The Hill's quadric anisotropy yield function and the Barlat-Lian anisotropy yield func- tion describing well anisotropy sheet metal with stronger texture are introduced into a quadric-flow cor- ner constitutive theory of elastic-plastic finite deformation suitable for deformation localization analy- sis.And then,the elastic-plastic large deformation finite element formulation based on the virtual power principle and the discrete Kirchhoff shell element model including the yield functions and the constitutive theory are established.The focus of the present research is on the numerical simulation of the flange earing of the deep-drawing of anisotropy circular sheets,based on the investigated results, the.schemes for controlling the flange earing are proposed. 展开更多
关键词 elastic-plastic large deformation discrete Kirchhoff shell element anisotropy yield function deep-drawing circular sheet flange earing
下载PDF
Evidence of guide field magnetic reconnection in flapping current sheets
4
作者 YunTian Hou SuPing Duan +1 位作者 Lei Dai Chi Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第4期650-658,共9页
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ... Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow. 展开更多
关键词 magnetic reconnection MAGNETOTAIL current sheet
下载PDF
Microstructure and texture evolution of cold-rolled deep-drawing steel sheet during annealing
5
作者 Le-yu Zhou Lei Wu +2 位作者 Ya-zheng Liu Xiao-jie Cheng Jin-hong Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期541-548,共8页
In accordance with experimental results about the annealing microstructure and texture of cold-rolled deep- drawing sheet based on the compact strip production (CSP) process, a two-dimensional cellular automation si... In accordance with experimental results about the annealing microstructure and texture of cold-rolled deep- drawing sheet based on the compact strip production (CSP) process, a two-dimensional cellular automation simulation model, considering real space and time scale, was established to simulate recrystallization and grain growth during the actual batch annealing process. The simulation results show that pancaked grains form during recrystallization. (111} advantageous texture components become the main parts of the recrystallization texture. After grain growth, the pancaked grains coarsen gradually. The content of (111} advantageous texture components in the annealing texture increases from 55vo1% to 65vo1%; meanwhile, the contents of {112}〈110〉 and {100}〈110〉 texture components decrease by 4% and 8%, respectively, compared with the recrystallization texture. The simulation results of microstructure and texture evolution are also consistent with the experimental ones, proving the accuracy and usefulness of the model. 展开更多
关键词 cold rolling deep drawing steel sheet cellular automata recrystallization ANNEALING
下载PDF
Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet
6
作者 U.S.Mahabaleshwar G.P.Vanitha +2 位作者 L.M.Pérez Emad H.Aly I.Pop 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期108-114,共7页
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon... We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable. 展开更多
关键词 MAGNETOHYDRODYNAMIC NANOFLUID stretching/shrinking sheet axisymmetric flow analytical solution suction/injection
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles
7
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency Sedimentation erosion
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study
8
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation Flow field characteristics Protection benefits
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
9
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Migration and role of zinc in biogeochemical cycles in the Antarctic Ice Sheet and the Southern Ocean
10
作者 LIU Jingwen LI Chuanjin +4 位作者 DU Zhiheng SHI Guitao DING Minghu SUN Bo XIAO Cunde 《Advances in Polar Science》 CSCD 2024年第2期157-177,共21页
Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its ... Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its transport routes,as well as its impact on the biogeochemical processes within the Antarctic atmosphere–land–ocean system.This review examines research on the spatial and temporal distribution of Zn in Antarctic snow and ice,as well as in Southern Ocean waters.It includes an overview of advanced methods for sampling and analyzing Zn,along with explanations for the observed variations.The review also discusses various sources of Zn as a nutrient to the Southern Ocean.Finally,it addresses prospective issues related to the use of Zn isotopes in identifying atmospheric sources and their biogeochemical effects on the development of the Southern Ocean ecosystem. 展开更多
关键词 ZINC biogeochemical cycles Antarctic Ice sheet Southern Ocean
下载PDF
Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/ Shrinking Sheet with a Heat Source or Sink
11
作者 Parakapali Roja Shaik Mohammed Ibrahim +1 位作者 Thummala Sankar Reddy Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2024年第2期257-274,共18页
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun... This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution. 展开更多
关键词 Chemical(first order homogeneous)reaction MAGNETOHYDRODYNAMICS MICROPOLAR nanofluid stretching/shrinking sheet heat source
下载PDF
Prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing
12
作者 Junxiang YonglinKang 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期360-362,共3页
On the basis of the criterion of no-wrinkle, the principle and method of prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing are put forward, and proved it's exp... On the basis of the criterion of no-wrinkle, the principle and method of prediction and determination of both friction coefficient and forming force on sheet metal deep-drawing are put forward, and proved it's expedience and practicability. They are suitable for assessment of lubricant properties. Friction coefficient and forming force are a function of material parameter, design parameter and process parameter, especially relative prevent wrinkle blank-holder force. Product of both friction coefficient and prevent wrinkle blank-holder force is only function of process parameter after determining material parameter and design parameter. 展开更多
关键词 deep-drawing friction coefficient forming force prediction and determination
下载PDF
Some recent advances in remote sensing-based monitoring of changes in the Greenland Ice Sheet
13
作者 FENG Tiantian JIA Jinyu +5 位作者 WANG Wei YU Zeran LIU Xingchen LI Guojun GU Yuanyuan LI Rongxing 《Advances in Polar Science》 CSCD 2024年第2期275-280,共6页
The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitor... The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitoring of the GrIS.In this paper,we present our recent research results from remote sensing-based GrIS change monitoring.First,historical satellite data are processed and used to fill data gaps and are combined with existing partial maps,completing an ice velocity map of the GrIS from the 1960s to 1980s.This map provides valuable data for estimating the historical mass balance of Greenland.Second,the monthly gravimetry-based mass balance of the GrIS from 2002 to 2020 is estimated by combining Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow On(GRACE-FO)data.It is found that the GrIS has lost a total mass of approximately 4443±75 Gt during this period.Third,based on Global Land Ice Measurements from Space(GLIMS),an updated Greenland glacier inventory is achieved utilizing data collected between 2006 and 2020.This inventory provides more detailed and up-to-data glacier boundaries of Greenland.Overall,these advances provide essential data support for estimating the mass balance of the GrIS,contributing to the advancement of research on global sea level change. 展开更多
关键词 Greenland Ice sheet remote sensing change monitoring ice velocity satellite gravimetry glacier inventory
下载PDF
A Physical Core-Loss Model for Laminated Magnetic Sheet Steels
14
作者 Kuofeng Chen 《Journal of Power and Energy Engineering》 2024年第3期115-123,共9页
A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation pro... A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation provides high simulation accuracy and performs dynamic core loss analysis on non-sinusoidal or pulse magnetic fields. The simulation examples use a high-grade electrical steel sheet 65CS400 by Epstein experimental data covering magnetic field 0.1 - 1.8 T and frequency 50 - 5000 Hz, and the average error of the simulated core loss is less than 4%. Since the simulation is converged by magnetic physical parameters, so the physical relevance of the similar laminated materials can be compared with the coefficient results. . 展开更多
关键词 Core Loss Hysteresis Loss Electrical Steel sheet
下载PDF
Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design
15
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期1-37,共37页
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi... This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques. 展开更多
关键词 sheet Pile Curtain Design Soil-Structure Interaction Geotechnical Engineering Advanced Design Techniques Finite Element Analysis Innovative Geotechnical Methods
下载PDF
Advanced Sheet Pile Curtain Design: Case Study of Cotonou East Corniche
16
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期38-64,共27页
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient... This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures. 展开更多
关键词 sheet Pile Walls and Structural Analysis Soil-Structure Interaction Modeling Structural Sustainability Cotonou East Corniche Sustainable Construction Plaxis Calculation Code Settlement Mitigation
下载PDF
Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation,energy omission
17
作者 Saleem Nasir Sekson Sirisubtawee +1 位作者 Pongpol Juntharee Taza Gul 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期193-202,共10页
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ... Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement. 展开更多
关键词 hybrid nanofluid(SWCNT+MWCNT/H_(2)O) velocity slip conditions nonlinear thermal radiation exponential stretching/shrinking sheet inclined magnetohydrodynamic(MHD)stagnation flow
下载PDF
Subsurface macro-inclusions and solidified hook character in aluminum-killed deep-drawing steel slabs 被引量:8
18
作者 Xiao-xuan Deng Lin-ping Li +3 位作者 Xin-hua Wang Yun-qing Ji Chen-xi Ji Guo-sen Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第6期531-543,共13页
Subsurface macro-inclusions and hooks are detrimental to the surface quality of deep-drawing steel sheets. However, little is known about the relationship between macro-inclusions and hooks. Thus, in this work, two ul... Subsurface macro-inclusions and hooks are detrimental to the surface quality of deep-drawing steel sheets. However, little is known about the relationship between macro-inclusions and hooks. Thus, in this work, two ultralow carbon (ULC) steel slabs and two low carbon (LC) aluminum-killed steel slabs were sampled to study the relationship between hooks and subsurface macro-inclusions, which were detected on the cross-sections of steel samples with an area of 56058 mm2 using an automated scanning electron microscopy/energy-disper-sive X-ray spectroscopy system. Results show that subsurface inclusions larger than 200 μm were almost entrapped by hook structures, whereas the location of other inclusions smaller than 200μm had no obvious dependence on the location of solidified hooks. Furthermore, the number density (ND) of subsurface inclusions larger than 200μm decreased from 0.02 to 0 cm-2 in ULC steel as the mean hook depth decreased from 1.57 to 1.01 mm. Similar trends were also observed in LC steel. In addition, the detected inclusions larger than 200μm were concentrated in the region near the slab center (3/8 width-5/8 width), where hook depths were also larger than those at any other locations. Therefore, minimizing the hook depth is an effective way to reduce inclusion-induced sliver defects in deep-drawing steels. 展开更多
关键词 low carbon steel aluminum-killed steel steel sheet deep drawing inclusions HOOKS
下载PDF
Prediction and Control of Both Wrinkle Limit and Fracture Limit on Cylindrical Cup Deep-Drawing 被引量:1
19
作者 Junxiang Lei(Department of Mechanical Enginecring, Yantai University, Yantai264005,China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第4期237-240,250,共5页
hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flan... hased on both the wrinkle model and fracturc model, the wrinkle critical tangent pressure and the fractureon critical radial tensile stress are calculated respectively. The maximum tangent pressure formula in the flange deformation zone and the maximum radial tensile stress formula in the cylinder-wall pass force zone are given, and both theno-wrinkle limitl criterion and no-fracture limit criterion are put froward. The prediction and control criterion anddiagram of both the wrinkle limit and fracture limit on cylindrical cup deep-drawing, the most suitable formingzone and the limit deep-drawing coefficient are obtained. Comparing with present experience formulae and actualproduct's production, this prediction and control are quite accurate. 展开更多
关键词 cylindrical cup deep-drawing wrinkle limit fracture limit deep-drawing limit
下载PDF
Prediction and Control of both Wrinkle Limit and Fracture Limiton Cylindrical Cup Deep-drawing(Ⅱ) 被引量:1
20
作者 Junxiang Lei Yonglin Kang(Department of Mechanical Engineering, Yantai University, Yantai 264005, China)(Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第3期201-204,共4页
The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are ... The prediction and control criterion of both the wrinkle limit and fracture limit on the cylindrical cup deep-drawing are given, and the prediction and control diagram of both the wrinkle limit and fracture limit are also given. The results show that it is suitable for no-flange cylindrical cup deep-drawing, narrow-flange cylindrical cup deep-drawing, wide-flange cylindrical cup deep-drawing/expanding compound forming and rigid punch expanding forming. 展开更多
关键词 cylindrical cup wrinkle limit fracture limit deep-drawing expanding forming compound forming
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部