Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,19...Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,1992;Wesnousky et al.,1999;Malik et al.,2010;Coudurier-Curveur et al.,2020;Shah et al.,2020).These faults are potentially dangerous due to their unknown risk and deformation budget,two of the most important aspects of mapping and understanding the vulnerability and hazards associated with active faults.展开更多
The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif...The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.展开更多
The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activi...The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activity due to the close relation of active structures and earthquakes.Regarding the fault activity,there are three different opinions:1) it is a large deep fault zone;2) it is an active fault zone and an earthquake structure belt;and 3) it is not an earthquake structure belt.In order to ascertain the active character of the fault,the deep tectonic setting and the activity since the Quaternary were investigated using recent seismic and drilling data to make a joint interpretation.The investigation results show that the Taihang Mountain piedmont fault is not a large lithospheric fault because the early middle Pleistocene(Q(P2)) layers are offset by the fault and the late middle Pleistocene(Q(P2)) and late Pleistocene layers are not offset by the fault.We determine that the Taihang Mountain piedmont fault in the area is not an active fault and is also not a large lithospheric fault.This study result provides important geological and geophysical data for city planning and construction in Hebei province and, especially,has great significance for seismic hazard assessment of the capital area.展开更多
Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimi...Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.展开更多
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region...This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.展开更多
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately un...Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10^-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmeushan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xiaushuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.展开更多
To investigate the recurrence behaviors of segment-rupturing eathquakes on active faults of the Chinese mainland, thispaper analyzes quantitatively earthquake history of 19 fault segments based on earthquake dam of mu...To investigate the recurrence behaviors of segment-rupturing eathquakes on active faults of the Chinese mainland, thispaper analyzes quantitatively earthquake history of 19 fault segments based on earthquake dam of multi-cyclerecurrences. The result shows that, for these fault segments, eanhquake recurring at previous locations is mainlycharacterized by both quasi-periodic (in a ratio of about) and time-predictable (in a ratio of about) behaviors.For the first behavior. intrinsic uncertainty of recurrence interval accounts for 0. 15-0.40 of the average interval, andmagnitudes of event vary from cycle to cycle within the range of the mean magnitUde t0.5. For the second behavior,intrinsic uncertainty of recurrence interval ranges mostly from 0. 19 to 0.40 of the average interval, and for successivetwo cycles the maximum change of event magnitudes is as much as 1.7 magnitude-units. In addition, for a few casesthe first behavior coexists along with either the second or the slip-predictable behaviors.展开更多
Based on the earthquake data of 11 active intraplate fault zones of the Chinese mainland, we have studied the earthquake recurrence behaviors on entire active fault zones and their relations to those on individual fau...Based on the earthquake data of 11 active intraplate fault zones of the Chinese mainland, we have studied the earthquake recurrence behaviors on entire active fault zones and their relations to those on individual fault-segments. The results show that the earthquake recurrence on entire active fault zones, each of them is made up of multiple segments, displays three types of behavior, i.e., the clustering behavior, the random behavior, and the poor quasi-periodic behavior. The major one is the sparse clustering behavior, its recurrence process often exhibits that clusters (active periods) and gaps (quiescent periods) occur alternatively in varying degrees. The recurrence intervals within and between clusters, the durations of individual clusters, the earthquake number and strength of every cluster are all variable. The recurrence process is non-linear, there is neither the strength-time dependence nor the time-strength dependence. However, the earthquake recurrence processes on individual fault-segments are much more simple, and mainly display either the quasi-periodic or the time-predictable behaviors. Also, this study further discovers that the temporal clustering in earthquake recurrence process on entire fault zones is mainly caused by the rupture 'contagion' on different fault-segments within relatively short periods of time. Along active fault zones, the degree and orientation of rupture 'contagion' may vary with different seismic cycles, and the 'contagion' seems to be able to jump over unbroken 'gaps' on the fault zones.展开更多
The Anninghe fault is a large left-lateral strike-slip fault in southwestern China. It has controlled deposition and magmatic activities since the Proterozoic, and seismic activity occurs frequently. The Mianning-Xich...The Anninghe fault is a large left-lateral strike-slip fault in southwestern China. It has controlled deposition and magmatic activities since the Proterozoic, and seismic activity occurs frequently. The Mianning-Xichang segment of the Anninghe fault is a seismic gap that has been locked by high stress. Many studies suggest that this segment has great potential for large earthquakes(magnitude >7). We obtained three vertical velocity profiles of the Anninghe fault(between Mianning and Xichang) based on the inversion of P-wave first arrival times. The travel time data were picked from seismograms generated by methane gaseous sources and recorded by three linearly distributed across-fault dense arrays. The inversion results show that the P-wave velocity structures at depths of 0-2 km corresponds well with the local lithology. The Quaternary sediments have low seismic velocities, whereas the igneous rocks,metamorphic rocks, and bedrock have high seismic velocities. We then further discuss the fault activities of the two fault branches of the Anninghe fault in the study region based on small earthquakes(magnitudes between ML 0.5 and ML 2.5) detected by the Xichang array.The eastern fault branch is more active than the western branch and that the fault activities in the eastern branch are different in the northern and southern segments at the border of 28°21′N. The high-resolution models obtained are essential for future earthquake rupture simulations and hazard assessments of the Anninghe fault zone. Future studies of velocity models at greater depths may further explain the complex fault activities in the study region.展开更多
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem...With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.展开更多
The open-circuit fault of the power switches in shunt active power filter(SAPF) would exacerbate the harmonic pollution of power grid, and degrade the reliability of the devices and system. A fault diagnosis method is...The open-circuit fault of the power switches in shunt active power filter(SAPF) would exacerbate the harmonic pollution of power grid, and degrade the reliability of the devices and system. A fault diagnosis method is proposed based on reference model and an over-modulation strategy under hardware fault tolerance for SAPF. First, a mathematic model is established for SAPF. Second, the residuals are generated by comparing the outputs of reference model and those of actual model, and open-switch fault is detected and diagnosed by residual evaluation. After that, hardware fault tolerance is performed with the three-phase four-switch(TPFS) topology to isolate the faulty phase. Finally, the over-modulation strategy is proposed to increase the voltage transfer ratio of the TPFS topology. Simulation and experimental results verified the feasibility and effectiveness of the proposed method.展开更多
Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of r...Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects.Therefore,a discrete element numerical model with different fault types,slip time,dip angles,and complex geological features was established,and then the creep slip for normal,reverse,and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass.A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults.A series of rotation tests for softand hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution.An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse,normal,and strike-slip faults.The results indicated that the higher the degree of horizontal extrusion,the softer the rock mass at the fault core,and the higher the degree of displacement concentration in the fault core;about 70%of the creep slip displacement occurs within this zone under 100 years of creep slippage.展开更多
Offshore active faults, especially those in the deep sea, are very difficultto study because of the water and sedimentary cover. To characterize the nature and geometry ofoffshore active faults, a combination of metho...Offshore active faults, especially those in the deep sea, are very difficultto study because of the water and sedimentary cover. To characterize the nature and geometry ofoffshore active faults, a combination of methods must be employed. Generally, seismic profiling isused to map these faults, but often only fault-related folds rather than fracture planes are imaged.Multi-beam swath bathymetry provides information on the structure and growth history of a faultbecause movements of an active fault are reflected in the bottom morphology. Submersible anddeep-tow surveys allow direct observations of deformations on the seafloor (including fracture zonesand microstructures). In the deep sea, linearly aligned cold seep communities provide indirectevidence for active faults and the spatial migration of their activities. The Western Sagami Bayfault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied indetail using the above methods. The bottom morphology, fractured breccias directly observed andphotographed, seismic profiles, as well as distribution and migration of cold seep communitiesprovide evidence for the nature and geometry of the fault. Focal mechanism solutions of selectedearthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximumcompression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating aleft-lateral strike-slip fault.展开更多
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten wate...Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten watersheds along with characteristics of relief and drainage orientation.Watersheds 7-9 to the north(N)are tectonically active,which can be linked with the North Kathiawar Fault System(NKFS)and followed by watersheds 6,10,1,4 and 5.Stream-length gradient index and sinuosity index indicate the effect of tectonic events along the master streams in watersheds 6-9.Higher R^(2)values of the linear curve fit for watershed 7 indicate its master stream is much more tectonically active than the others.The R^(2)curve fitting model and earthquake magnitude/depth analysis confirm the region to be active.The reactivation of the NKFS most likely led to the vertical movement of western Saurashtra.展开更多
-On the basis of the data of geophysics and seismic activities, the analyses of the active faults, seismic activities and the sea floor unstable factors of the Zhujiang River Mouth Basin have been made so as to study ...-On the basis of the data of geophysics and seismic activities, the analyses of the active faults, seismic activities and the sea floor unstable factors of the Zhujiang River Mouth Basin have been made so as to study the characteristics of the compressional subactive continental margin of Cathaysian system, arc littoral strongly active fracture zone, the division of seismic subzone and seismic zone of the continental margin of northern South China Sea, the potential focal area, and to analyze the regional stability. We consider that the Zhujiang River Mouth Basin belongs to a stable or a moderately stable region.展开更多
Lanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 2) Institute of Geology, China Seismological Bureau, Beijing 100029, China
The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Activ...The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Active faults and seismic activity are important geological factors for the planning and development of the YREB.In this paper,the spatial distribution and activity of 165 active faults that exist along the YREB have been compiled from previous findings,using both remote-sensing data and geological survey results.The crustal stability of seven particularly noteworthy typical active fault zones and their potential effects on the crustal stability of the urban agglomerations are analyzed.The main active fault zones in the western YREB,together with the neighboring regional active faults,make up an arc fault block region comprising primarily of Sichuan-Yunnan and a“Sichuan-Yunnan arc rotational-shear active tectonic system”strong deformation region that features rotation,shear and extensional deformation.The active faults in the central-eastern YREB,with seven NE-NNE and seven NW-NWW active faults(the“7-longitudinal,7-horizontal”pattern),macroscopically make up a“chessboard tectonic system”medium-weak deformation region in the geomechanical tectonic system.They are also the main geological constraints for the crustal stability of the YREB.展开更多
The Wenchuan earthquake coseismic deformation field is inferred from the coseismic dislocation data based on a 3-D geometric model of the active faults in Sichuan-Yunnan region. Then the potential dislocation displace...The Wenchuan earthquake coseismic deformation field is inferred from the coseismic dislocation data based on a 3-D geometric model of the active faults in Sichuan-Yunnan region. Then the potential dislocation displacement is inverted from the deformation field in the 3-D geometric model. While the faults' slip velocities are inverted from GPS and leveling data, which can be used as the long-term slip vector. After the potential dislocation displacements are projected to long-term slip direction, we have got the influence of Wenchuan earthquake on active faults in Sichuan-Yunnan region. The results show that the northwestern segment of Longmenshan fault, the southern segments of Xianshuihe fault, Anninghe fault, Zemuhe fault, northern and southern segments of Daliangshan fault, Mabian fault got earthquake risks advanced of 305, 19, 12, 9.1 and 18, 51 years respectively in the eastern part of Sichuan and Yunnan. The Lijiang-Xiaojinhe fault, Nujiang fault, Longling-Lancang fault, Nantinghe fault and Zhongdian fault also got earthquake risks advanced in the western part of Sichuan-Yunnan region. Whereas the northwestern segment of Xianshuihe fault and Xiaojiang fault got earthquake risks reduced after the Wenchuan earthquake.展开更多
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
文摘Exploring the evidence for unidentified earthquake-causing faults in the orogenic zones,and primarily the interior parts(Shah,2013),has been an ongoing quest for centuries(Willis,1923;Baker et al.,1988;Yeats et al.,1992;Wesnousky et al.,1999;Malik et al.,2010;Coudurier-Curveur et al.,2020;Shah et al.,2020).These faults are potentially dangerous due to their unknown risk and deformation budget,two of the most important aspects of mapping and understanding the vulnerability and hazards associated with active faults.
基金supported by the National Natural Science Foundation of China(Grant Nos.41825018,41977248,42207219)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.
基金supported by the Fund Project:Subsidized by the Project of City Active Fault Detection and Seismic Risk Assessment in Hebei Province(Handan City).
文摘The Taihang Mountain piedmont fault is a large-scale structure zone in north and east China which cross Beijing,with the NE-NNE extent spans approximately 620 km.It is very important to determine the fault zone activity due to the close relation of active structures and earthquakes.Regarding the fault activity,there are three different opinions:1) it is a large deep fault zone;2) it is an active fault zone and an earthquake structure belt;and 3) it is not an earthquake structure belt.In order to ascertain the active character of the fault,the deep tectonic setting and the activity since the Quaternary were investigated using recent seismic and drilling data to make a joint interpretation.The investigation results show that the Taihang Mountain piedmont fault is not a large lithospheric fault because the early middle Pleistocene(Q(P2)) layers are offset by the fault and the late middle Pleistocene(Q(P2)) and late Pleistocene layers are not offset by the fault.We determine that the Taihang Mountain piedmont fault in the area is not an active fault and is also not a large lithospheric fault.This study result provides important geological and geophysical data for city planning and construction in Hebei province and, especially,has great significance for seismic hazard assessment of the capital area.
文摘Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.
基金the auspice of National Key Basic Project(973)(granted number 2008CB425702)National Science and Technology Project(granted Number SinoProbe-08)China Geological Survey project(granted number1212010670104)
文摘This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.
基金supported mainly by the National Key Basic Research Program(No.2004CB418401)the National Natural Science Foundation of China(grant No.40472109)+1 种基金partly from the Joint Earthquake Science Foundation of China(grant No.105066)the SASAKAWA Scientific Grant from the Japan Science Society.
文摘Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10^-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmeushan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xiaushuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.
文摘To investigate the recurrence behaviors of segment-rupturing eathquakes on active faults of the Chinese mainland, thispaper analyzes quantitatively earthquake history of 19 fault segments based on earthquake dam of multi-cyclerecurrences. The result shows that, for these fault segments, eanhquake recurring at previous locations is mainlycharacterized by both quasi-periodic (in a ratio of about) and time-predictable (in a ratio of about) behaviors.For the first behavior. intrinsic uncertainty of recurrence interval accounts for 0. 15-0.40 of the average interval, andmagnitudes of event vary from cycle to cycle within the range of the mean magnitUde t0.5. For the second behavior,intrinsic uncertainty of recurrence interval ranges mostly from 0. 19 to 0.40 of the average interval, and for successivetwo cycles the maximum change of event magnitudes is as much as 1.7 magnitude-units. In addition, for a few casesthe first behavior coexists along with either the second or the slip-predictable behaviors.
基金Chinese Joint Seismological Science Foundation !(95-07-423).
文摘Based on the earthquake data of 11 active intraplate fault zones of the Chinese mainland, we have studied the earthquake recurrence behaviors on entire active fault zones and their relations to those on individual fault-segments. The results show that the earthquake recurrence on entire active fault zones, each of them is made up of multiple segments, displays three types of behavior, i.e., the clustering behavior, the random behavior, and the poor quasi-periodic behavior. The major one is the sparse clustering behavior, its recurrence process often exhibits that clusters (active periods) and gaps (quiescent periods) occur alternatively in varying degrees. The recurrence intervals within and between clusters, the durations of individual clusters, the earthquake number and strength of every cluster are all variable. The recurrence process is non-linear, there is neither the strength-time dependence nor the time-strength dependence. However, the earthquake recurrence processes on individual fault-segments are much more simple, and mainly display either the quasi-periodic or the time-predictable behaviors. Also, this study further discovers that the temporal clustering in earthquake recurrence process on entire fault zones is mainly caused by the rupture 'contagion' on different fault-segments within relatively short periods of time. Along active fault zones, the degree and orientation of rupture 'contagion' may vary with different seismic cycles, and the 'contagion' seems to be able to jump over unbroken 'gaps' on the fault zones.
基金supported by the Key Research and Development Project of the Ministry of Science and Technology(Grant No.2018YFC1503400)。
文摘The Anninghe fault is a large left-lateral strike-slip fault in southwestern China. It has controlled deposition and magmatic activities since the Proterozoic, and seismic activity occurs frequently. The Mianning-Xichang segment of the Anninghe fault is a seismic gap that has been locked by high stress. Many studies suggest that this segment has great potential for large earthquakes(magnitude >7). We obtained three vertical velocity profiles of the Anninghe fault(between Mianning and Xichang) based on the inversion of P-wave first arrival times. The travel time data were picked from seismograms generated by methane gaseous sources and recorded by three linearly distributed across-fault dense arrays. The inversion results show that the P-wave velocity structures at depths of 0-2 km corresponds well with the local lithology. The Quaternary sediments have low seismic velocities, whereas the igneous rocks,metamorphic rocks, and bedrock have high seismic velocities. We then further discuss the fault activities of the two fault branches of the Anninghe fault in the study region based on small earthquakes(magnitudes between ML 0.5 and ML 2.5) detected by the Xichang array.The eastern fault branch is more active than the western branch and that the fault activities in the eastern branch are different in the northern and southern segments at the border of 28°21′N. The high-resolution models obtained are essential for future earthquake rupture simulations and hazard assessments of the Anninghe fault zone. Future studies of velocity models at greater depths may further explain the complex fault activities in the study region.
基金supported by China Natural Scientific and Technological Support Projects(Wenchuan Fault Scientific Drilling)National Natural Scientific Foundation of China(Grant No.41204047)
文摘With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.
基金Project(2012AA051601)supported by the High-Tech Research and Development Program of China
文摘The open-circuit fault of the power switches in shunt active power filter(SAPF) would exacerbate the harmonic pollution of power grid, and degrade the reliability of the devices and system. A fault diagnosis method is proposed based on reference model and an over-modulation strategy under hardware fault tolerance for SAPF. First, a mathematic model is established for SAPF. Second, the residuals are generated by comparing the outputs of reference model and those of actual model, and open-switch fault is detected and diagnosed by residual evaluation. After that, hardware fault tolerance is performed with the three-phase four-switch(TPFS) topology to isolate the faulty phase. Finally, the over-modulation strategy is proposed to increase the voltage transfer ratio of the TPFS topology. Simulation and experimental results verified the feasibility and effectiveness of the proposed method.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProjects(41941018,51879135)supported by the National Natural Science Foundation of China。
文摘Active fault creep slip induces deformation of rock mass buried deeply in fault zones that significantly affect the operational safety of long linear projects passing through it.Displacement distribution patterns of rock masses in active fault zones which have been investigated previously are the key design basis for such projects.Therefore,a discrete element numerical model with different fault types,slip time,dip angles,and complex geological features was established,and then the creep slip for normal,reverse,and strike-slip faults were simulated to analyze the displacement distribution in the fault rock mass.A disk rotation test system and the corresponding laboratory test method were developed for simulating rock mass displacement induced by creep slippage of faults.A series of rotation tests for softand hard-layered specimens under combined compression and torsional stress were conducted to verify the numerical results and analyze the factors influencing the displacement distribution.An S-shaped displacement distribution independent of fault dip angle was identified corresponding to reverse,normal,and strike-slip faults.The results indicated that the higher the degree of horizontal extrusion,the softer the rock mass at the fault core,and the higher the degree of displacement concentration in the fault core;about 70%of the creep slip displacement occurs within this zone under 100 years of creep slippage.
基金the Ministry of Science and Technology of China(G2000046704).
文摘Offshore active faults, especially those in the deep sea, are very difficultto study because of the water and sedimentary cover. To characterize the nature and geometry ofoffshore active faults, a combination of methods must be employed. Generally, seismic profiling isused to map these faults, but often only fault-related folds rather than fracture planes are imaged.Multi-beam swath bathymetry provides information on the structure and growth history of a faultbecause movements of an active fault are reflected in the bottom morphology. Submersible anddeep-tow surveys allow direct observations of deformations on the seafloor (including fracture zonesand microstructures). In the deep sea, linearly aligned cold seep communities provide indirectevidence for active faults and the spatial migration of their activities. The Western Sagami Bayfault (WSBF) in the western Sagami Bay off central Japan is an active fault that has been studied indetail using the above methods. The bottom morphology, fractured breccias directly observed andphotographed, seismic profiles, as well as distribution and migration of cold seep communitiesprovide evidence for the nature and geometry of the fault. Focal mechanism solutions of selectedearthquakes in the western Sagami Bay during the period from 1900 to 1995 show that the maximumcompression trends NW-SE and the minimum stress axis strikes NE-SW, a stress pattern indicating aleft-lateral strike-slip fault.
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.
基金Research Development Fund(IIT Bombay)supported SM。
文摘Active tectonics in an area includes ongoing or recent geologic events.This paper investigates the tectonic influence on the subsidence,uplift and tilt of western Saurashtra through morphotectonic analysis of ten watersheds along with characteristics of relief and drainage orientation.Watersheds 7-9 to the north(N)are tectonically active,which can be linked with the North Kathiawar Fault System(NKFS)and followed by watersheds 6,10,1,4 and 5.Stream-length gradient index and sinuosity index indicate the effect of tectonic events along the master streams in watersheds 6-9.Higher R^(2)values of the linear curve fit for watershed 7 indicate its master stream is much more tectonically active than the others.The R^(2)curve fitting model and earthquake magnitude/depth analysis confirm the region to be active.The reactivation of the NKFS most likely led to the vertical movement of western Saurashtra.
基金This study granted by the Scientific Foundation of the China Academy of Science, is one of the stage results of the subject (R850835). A symposium of the International Petroleum Geological Conference of Northern South China Sea Continental Shelf, 1987
文摘-On the basis of the data of geophysics and seismic activities, the analyses of the active faults, seismic activities and the sea floor unstable factors of the Zhujiang River Mouth Basin have been made so as to study the characteristics of the compressional subactive continental margin of Cathaysian system, arc littoral strongly active fracture zone, the division of seismic subzone and seismic zone of the continental margin of northern South China Sea, the potential focal area, and to analyze the regional stability. We consider that the Zhujiang River Mouth Basin belongs to a stable or a moderately stable region.
基金State Key Basic Research Development and Programming Project (G19980407-04) and the Project during the ninth Five-Year Plan of Gansu Province (GK973-2-110A).
文摘Lanzhou Institute of Seismology, China Seismological Bureau, Lanzhou 730000, China 2) Institute of Geology, China Seismological Bureau, Beijing 100029, China
基金This research is funded by the China Geological Survey project(DD20160268).
文摘The Yangtze River Economic Belt(YREB)spans three terrain steps in China and features diverse topography that is characterized by significant differences in geological structure and presentday crustal deformation.Active faults and seismic activity are important geological factors for the planning and development of the YREB.In this paper,the spatial distribution and activity of 165 active faults that exist along the YREB have been compiled from previous findings,using both remote-sensing data and geological survey results.The crustal stability of seven particularly noteworthy typical active fault zones and their potential effects on the crustal stability of the urban agglomerations are analyzed.The main active fault zones in the western YREB,together with the neighboring regional active faults,make up an arc fault block region comprising primarily of Sichuan-Yunnan and a“Sichuan-Yunnan arc rotational-shear active tectonic system”strong deformation region that features rotation,shear and extensional deformation.The active faults in the central-eastern YREB,with seven NE-NNE and seven NW-NWW active faults(the“7-longitudinal,7-horizontal”pattern),macroscopically make up a“chessboard tectonic system”medium-weak deformation region in the geomechanical tectonic system.They are also the main geological constraints for the crustal stability of the YREB.
基金supported by the Key Project of Chinese Programs for Fundamental Research and Development (2004CB418406)
文摘The Wenchuan earthquake coseismic deformation field is inferred from the coseismic dislocation data based on a 3-D geometric model of the active faults in Sichuan-Yunnan region. Then the potential dislocation displacement is inverted from the deformation field in the 3-D geometric model. While the faults' slip velocities are inverted from GPS and leveling data, which can be used as the long-term slip vector. After the potential dislocation displacements are projected to long-term slip direction, we have got the influence of Wenchuan earthquake on active faults in Sichuan-Yunnan region. The results show that the northwestern segment of Longmenshan fault, the southern segments of Xianshuihe fault, Anninghe fault, Zemuhe fault, northern and southern segments of Daliangshan fault, Mabian fault got earthquake risks advanced of 305, 19, 12, 9.1 and 18, 51 years respectively in the eastern part of Sichuan and Yunnan. The Lijiang-Xiaojinhe fault, Nujiang fault, Longling-Lancang fault, Nantinghe fault and Zhongdian fault also got earthquake risks advanced in the western part of Sichuan-Yunnan region. Whereas the northwestern segment of Xianshuihe fault and Xiaojiang fault got earthquake risks reduced after the Wenchuan earthquake.