The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for...Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm.展开更多
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o...Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints.展开更多
The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory e...The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.展开更多
Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, e...Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, extraterrestrial life, this paper put forward a propose about the roadmap and scientific objectives of China's Deep-space Exploration before 2030.展开更多
Previous research on deep-space networks based on delay-tolerant networking(DTN)has mainly focused on the performance of DTN protocols in simple networks;hence,research on complex networks is lacking.In this paper,we ...Previous research on deep-space networks based on delay-tolerant networking(DTN)has mainly focused on the performance of DTN protocols in simple networks;hence,research on complex networks is lacking.In this paper,we focus on network evaluation and protocol deployment for complex DTNbased deep-space networks and apply the results to a novel complex deep-space network based on the Universal Interplanetary Communication Network(UNICON-CDSN)proposed by the National Space Science Center(NSSC)for simulation and verification.A network evaluation method based on network capacity and memory analysis is proposed.Based on a performance comparison between the Licklider Transmission Protocol(LTP)and the Transmission Control Protocol(TCP)with the Bundle Protocol(BP)in various communication scenarios,a transport protocol configuration proposal is developed and used to construct an LTP deployment scheme for UNICON-CDSN.For the LTP deployment scheme,a theoretical model of file delivery time over complex deep-space networks is built.A network evaluation with the method proposed in this paper proves that UNICONCDSN satisfies the requirements for the 2020 Mars exploration mission Curiosity.Moreover,simulation results from a universal space communication network testbed(USCNT)designed by us show that the LTP deployment scheme is suitable for UNICON-CDSN.展开更多
eight planets,various asteroids and comets in the solar system.Amount of deep-space scientific experiments promoted people to understand about the origin and evolution of the universe.With the rapid developments of eq...eight planets,various asteroids and comets in the solar system.Amount of deep-space scientific experiments promoted people to understand about the origin and evolution of the universe.With the rapid developments of equipment and spacecraft with high-accuracy detector and long-term energy,more and more ambitious deep-space exploration plans have also been scheduled or under discussion about space resources utilization and space migration,e.g.,manned landing on the Mars,guard infrastructures on the Moon and human-flight to the edge of the solar system(>100 AU),etc.展开更多
Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture ...Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.展开更多
This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from ...This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from vector observations was done to demonstrate that the geometric relation between the reference vectors is an important factor which influences the accuracy of attitude estimation.Then,with introduction of the sun line-of-sight vector,the attitude quaternion obtained from the star-sensor was converted into a pair of mutually perpendicular reference vectors perpendicular to the sun vector.The normalized weights were calculated according to the accuracy of the sensors.Furthermore,the optimal attitude estimation in the least squares sense was achieved with the quaternion estimation method.Finally,the results of simulation demonstrated the validity of the proposed optimal algorithm based on the practical data of the Deep Impact mission.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金funding provided by the State Nuclear Waste Management Fund(VYR)and the support of the Ministry of Economic Affairs and Employment of Finland on the Finnish Research Program on Nuclear Waste Management KYT2018 and KYT2022 of the Nuclear Energy Act(990/1987)in the research projects Fluid flow in fractured hard rock mass(RAKKA),funding numbers KYT 1/2021 and KYT 1/2022Additional support was received from the National Nuclear Safety and Waste Management Research Program SAFER2028,funding numbers SAFER 25/2023(MIRKA)and SAFER 42/2023(CORF).
文摘Photogrammetry,reconstructing three-dimensional(3D)models from overlapping two-dimensional(2D)photos,finds application in rock mechanics and rock engineering to extract geometrical details of reconstructed objects,for example rock fractures.Fracture properties are important for determining the mechanical stability,permeability,strength,and shear behavior of the rock mass.Photogrammetry can be used to reconstruct detailed 3D models of two separated rock fracture surfaces to characterize fracture roughness and physical aperture,which controls the fluid flow,hydromechanical and shear behavior of the rock mass.This research aimed to determine the optimal number of scale bars required to produce high-precision 3D models of a fracture surface.A workflow has been developed to define the physical aperture of a fracture using photogrammetry.Three blocks of Kuru granite(25 cm×25 cm×10 cm)with an artificially induced fracture,were investigated.For scaling 3D models,321 markers were used as ground control points(GCPs)with predefined distances on each block.When the samples were wellmatched in their original positions,the entire block was photographed.Coordinate data of the GCPs were extracted from the 3D model of the blocks.Each half was surveyed separately and georeferenced by GCPs and merged into the same coordinate system.Two fracture surfaces were extracted from the 3D models and the vertical distance between the two surfaces was digitally calculated as physical aperture.Accuracy assessment of the photogrammetric reconstruction showed a 20-30 mm digital control distance accuracy when compared to known distances defined between markers.To attain this accuracy,the study found that at least 200 scale bars were required.Furthermore,photogrammetry was employed to measure changes in aperture under normal stresses.The results obtained from this approach were found to be in good agreement with those obtained using linear variable displacement transducers(LVDTs),with differences ranging from 1 mm to 8μm.
基金supported by the National Natural Science Foundation of China (Nos.42207175 and 42177117)the Ningbo Natural Science Foundation (No.2022J115)。
文摘Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277150,41977219)Henan Provincial Science and Technology Research Project(Grant No.222102320271).
文摘The geometry of joints has a significant influence on the mechanical properties of rocks.To simplify the curved joint shapes in rocks,the joint shape is usually treated as straight lines or planes in most laboratory experiments and numerical simulations.In this study,the computerized tomography (CT) scanning and photogrammetry were employed to obtain the internal and surface joint structures of a limestone sample,respectively.To describe the joint geometry,the edge detection algorithms and a three-dimensional (3D) matrix mapping method were applied to reconstruct CT-based and photogrammetry-based jointed rock models.For comparison tests,the numerical uniaxial compression tests were conducted on an intact rock sample and a sample with a joint simplified to a plane using the parallel computing method.The results indicate that the mechanical characteristics and failure process of jointed rocks are significantly affected by the geometry of joints.The presence of joints reduces the uniaxial compressive strength (UCS),elastic modulus,and released acoustic emission (AE) energy of rocks by 37%–67%,21%–24%,and 52%–90%,respectively.Compared to the simplified joint sample,the proposed photogrammetry-based numerical model makes the most of the limited geometry information of joints.The UCS,accumulative released AE energy,and elastic modulus of the photogrammetry-based sample were found to be very close to those of the CT-based sample.The UCS value of the simplified joint sample (i.e.38.5 MPa) is much lower than that of the CT-based sample (i.e.72.3 MPa).Additionally,the accumulative released AE energy observed in the simplified joint sample is 3.899 times lower than that observed in the CT-based sample.CT scanning provides a reliable means to visualize the joints in rocks,which can be used to verify the reliability of photogrammetry techniques.The application of the photogrammetry-based sample enables detailed analysis for estimating the mechanical properties of jointed rocks.
文摘Focusing on the key scientific questions of deep space exploration which include the origin and evolution of the solar system and its planets, disastrous impact on the Earth by the solar activities and small bodies, extraterrestrial life, this paper put forward a propose about the roadmap and scientific objectives of China's Deep-space Exploration before 2030.
基金supported by the Strategic leading project of the Chinese Academy of Sciences (Grant No. XDA15014603)。
文摘Previous research on deep-space networks based on delay-tolerant networking(DTN)has mainly focused on the performance of DTN protocols in simple networks;hence,research on complex networks is lacking.In this paper,we focus on network evaluation and protocol deployment for complex DTNbased deep-space networks and apply the results to a novel complex deep-space network based on the Universal Interplanetary Communication Network(UNICON-CDSN)proposed by the National Space Science Center(NSSC)for simulation and verification.A network evaluation method based on network capacity and memory analysis is proposed.Based on a performance comparison between the Licklider Transmission Protocol(LTP)and the Transmission Control Protocol(TCP)with the Bundle Protocol(BP)in various communication scenarios,a transport protocol configuration proposal is developed and used to construct an LTP deployment scheme for UNICON-CDSN.For the LTP deployment scheme,a theoretical model of file delivery time over complex deep-space networks is built.A network evaluation with the method proposed in this paper proves that UNICONCDSN satisfies the requirements for the 2020 Mars exploration mission Curiosity.Moreover,simulation results from a universal space communication network testbed(USCNT)designed by us show that the LTP deployment scheme is suitable for UNICON-CDSN.
文摘eight planets,various asteroids and comets in the solar system.Amount of deep-space scientific experiments promoted people to understand about the origin and evolution of the universe.With the rapid developments of equipment and spacecraft with high-accuracy detector and long-term energy,more and more ambitious deep-space exploration plans have also been scheduled or under discussion about space resources utilization and space migration,e.g.,manned landing on the Mars,guard infrastructures on the Moon and human-flight to the edge of the solar system(>100 AU),etc.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05008-006004-002)the National Natural Science Foundation of China(Grant Nos.41502126 and 41902155)the Open Foundation of Top Disciplines in Yangtze University(Grant No.2019KFJJ0818022)。
文摘Three-dimensional unmanned aerial vehicle(UAV)oblique photogrammetric data were used to infer mountainous gravel braided river lithofacies,lithofacies associations and architectural elements.Hierarchical architecture and lithofacies associations with detailed lithofacies characterizations were comprehensively described to document the architectural model,architectural element scale and gravel particle scale.(1)Nine lithofacies(i.e.,Gmm,Gcm,Gcc,Gci,Gcl,Ss,Sm,Fsm and Fl)were identified and classified as gravel,sand and fine matrix deposits.These are typical depositional features of a mountainous dryland gravel-braided river.(2)Three architectural elements were identified,including channel(CH),gravel bar(GB)and overbank(OB).CH can be further divided into flow channel and abandoned channel,while GB consists of Central Gravel bar(CGB)and Margin Gravel bar(MGB).(3)The gravel bar is the key architectural element of the gravel braided river,with its geological attributes.The dimensions of GBs and their particles are various,but exhibit good relationships with each other.The grain size of GB decreases downstream,but the dimensions of GB do not.The bank erosion affects the GB dimensions,whereas channel incision and water flow velocity influence the grain size of GB.The conclusions can be applied to the dryland gravel braided river studies in tectonically active areas.
文摘This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from vector observations was done to demonstrate that the geometric relation between the reference vectors is an important factor which influences the accuracy of attitude estimation.Then,with introduction of the sun line-of-sight vector,the attitude quaternion obtained from the star-sensor was converted into a pair of mutually perpendicular reference vectors perpendicular to the sun vector.The normalized weights were calculated according to the accuracy of the sensors.Furthermore,the optimal attitude estimation in the least squares sense was achieved with the quaternion estimation method.Finally,the results of simulation demonstrated the validity of the proposed optimal algorithm based on the practical data of the Deep Impact mission.