It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analy...Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.展开更多
Identifying fractures along a well trajectory is of immense significance in determining the subsurface fracture network distribution.Typically,conventional logs exhibit responses in fracture zones,and almost all wells...Identifying fractures along a well trajectory is of immense significance in determining the subsurface fracture network distribution.Typically,conventional logs exhibit responses in fracture zones,and almost all wells have such logs.However,detecting fractures through logging responses can be challenging since the log response intensity is weak and complex.To address this problem,we propose a deep learning model for fracture identification using deep forest,which is based on a cascade structure comprising multi-layer random forests.Deep forest can extract complex nonlinear features of fractures in conventional logs through ensemble learning and deep learning.The proposed approach is tested using a dataset from the Oligocene to Miocene tight carbonate reservoirs in D oilfield,Zagros Basin,Middle East,and eight logs are selected to construct the fracture identification model based on sensitivity analysis of logging curves against fractures.The log package includes the gamma-ray,caliper,density,compensated neutron,acoustic transit time,and shallow,deep,and flushed zone resistivity logs.Experiments have shown that the deep forest obtains high recall and accuracy(>92%).In a blind well test,results from the deep forest learning model have a good correlation with fracture observation from cores.Compared to the random forest method,a widely used ensemble learning method,the proposed deep forest model improves accuracy by approximately 4.6%.展开更多
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective ...Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective exploitation.The Beijing-Tianjin-Hebei Plain(BTHP),predominantly located within the Jizhong Depression and Cangxian Uplift in the Bohai Bay Basin,serves as the primary region for geothermal exploitation and utilization in China.More than 1500 geothermal wells have been drilled therein,with water temperature at the wellhead ranging from 55 to 110°C,single-well flow rate ranging between 80 and 120 m^(3)/h,and cumulative heating area exceeding 100×10^(6)m^(3).However,the exploration and research in the region remain limited overall.As per the previous geothermal and petroleum exploration results and the latest geothermal drilling data,this study comprehensively evaluated the geothermal resources of karst geothermal reservoirs.The results show that two suites of carbonate karst reservoirs,namely the Jxw Formation and the Ordovician strata,have primarily developed in the BTHP,and their formation and evolution can be divided into four stages:the Mesoproterozoic-Early Paleozoic stage with carbonate sedimentation and the development of interlayer karst,the Late Paleozoic stage with the development of direct sedimentary cover,the Mesozoic stage with compressional uplifting and development of buried hill karst,and the Cenozoic stage with regional cover deposition and the modification and finalization of karst geothermal reservoirs.Accordingly,the porosity evolution history of the geothermal reservoirs is composed of three stages,namely a significant decrease followed by a minor increase,a gradual decline,and then a small fluctuation from increase to decrease before slowly rising again.The karstification in geothermal reservoirs can be summarized into quasi-syngenetic karstification,epigenetic karstification,and burial karstification,which can be subdivided into seven subcategories.The carbonate geothermal reservoirs in the study area boast total geothermal resources of 53.821×10^(9)GJ,or 184.155×10^(9)t of standard coal equivalent(tce),and the annual exploitable geothermal resources in the urban area can heat an area of(400‒500)×10^(6)m^(3),indicating great potential of geothermal exploitation.展开更多
Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic...Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.展开更多
Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevat...Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevated temperature conditions has been limited so far.Our study uses batch reactor experiments at 100℃ to investigate the dissolution of andesite rock samples obtained from an active geothermal reservoir in Sumatra(Indonesia).The samples are subjected to reactions with neutral-pH fluids and acidic fluids,mimicking the geochemical responses upon reinjection of geothermal fluids,either without or with dissolved acidic gases,respectively.Chemical elemental analysis reveals the release of Ca^(2+)ions into the fluids through the dissolution of feldspar.The overall dissolution rate of the rock samples is 2.4×10^(–11)to 4.2×10^(–11)mol/(m^(2)·s),based on the Si release during the initial 7 h of the experiment.The dissolution rates are about two orders of magnitude lower than those reported for basaltic rocks under similar reaction conditions.This study offers valuable insights into the potential utilization of andesite reservoirs for effective CO_(2) storage via mineralization.展开更多
The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in th...The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in the study area,combined with the current trends and advances in well log interpretation techniques for carbonate reservoirs,a log interpretation technology route of“geological information constraint+deep learning”was developed.The principal component analysis(PCA)was employed to establish lithology identification criteria with an accuracy of 91%.The Bayesian stepwise discriminant method was used to construct a sedimentary microfacies identification method with an accuracy of 90.5%.Based on production data,the main lithologies and sedimentary microfacies of effective reservoirs were determined,and 10 petrophysical facies with effective reservoir characteristics were identified.Constrained by petrophysical facies,the mean interpretation error of porosity compared to core analysis results is 2.7%,and the ratio of interpreted permeability to core analysis is within one order of magnitude,averaging 3.6.The research results demonstrate that deep learning algorithms can uncover the correlation in carbonate reservoir well logging data.Integrating geological and production data and selecting appropriate machine learning algorithms can significantly improve the accuracy of well log interpretation for carbonate reservoirs.展开更多
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di...Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.展开更多
The Ordovician reservoirs in the Tahe oilfield are dominated by fractured-vuggy carbonate reservoirs, of which fault-karst reservoirs are a hot topic in recent years. Fault-karst reservoirs feature high production, la...The Ordovician reservoirs in the Tahe oilfield are dominated by fractured-vuggy carbonate reservoirs, of which fault-karst reservoirs are a hot topic in recent years. Fault-karst reservoirs feature high production, large burial depth, and strong heterogeneity under the control of faulting and karstification. Based on geological, logging, and seismic data, this study classified the Ordovician fault-karst reservoirs in the Yuejin block of the Tahe oilfield into three types, namely karst-cave, dissolved-vug, and fractured types, and established the integrated identification criteria of the three types of reservoirs. This study characterized karst caves, dissolved vugs, and multi-scale faults through seismic wave impedance inversion and frequency-domain detection of multi-scale faults. 3D geological models of different types of reservoirs were built using the combined deterministic and stochastic methods and characterized the spatial distribution of multi-scale faults, karst caves, dissolved vugs, and physical property parameters of reservoir. This study established the method for the geological modeling of fault-karst reservoirs, achieved the quantitative characterization and revealed the heterogeneity of fault-karst reservoirs. The karst-cave and dissolved-vug types are high in porosity and act as reservoirs, while the fractured type is high in permeability and act as flow pathway. This study lays the foundation for the development index prediction, well emplacement, and efficient development of the fault-karst carbonate reservoirs.展开更多
The Palaeozoic carbonate basement of the Offshore Bohai Bay Basin (OBBB) presents considerable potential for hydrocarbon exploration. However, the multistage tectonism and complex superimposed palaeo-karstification in...The Palaeozoic carbonate basement of the Offshore Bohai Bay Basin (OBBB) presents considerable potential for hydrocarbon exploration. However, the multistage tectonism and complex superimposed palaeo-karstification in the area are unclear, which leads to a lack of understanding on the formation mechanism and distribution of the deep carbonate basement reservoirs. In this study, the occurrence of a fracture-vug network and its fillings in carbonate reservoirs were investigated based on borehole cores, thin sections, and image logs from the southwestern slope of the OBBB's Bozhong Sag. Then the diagenetic fluid properties of the carbonate matrix and fillings were analysed via the data of carbon, oxygen, and strontium isotopes, and major, rare elements from coring intervals. The results revealed that fracture-related karst reservoirs have lithologic selectivity inclined toward dolomite strata. The intersecting relationships, widths, and strikes of the fractures and the regional tectonic background indicate three structural fracture families: NW-, NNE-, and NNW- trending, related to the Indosinian, middle Yanshanian, and late Yanshanian orogeny, respectively. The Indosinian NW- and end-Mesozoic NNE-trending fractures produced by compressional tectonic stress mainly contributed to the formation of the basement reservoirs. The geochemistry of the calcite veins filling these fractures suggests two main types of diagenetic fluids. The fluid of autogenic recharge related to the earlier fills is karstification diffuse flow dominated by internal runoff from rainfall in the highland setting of the Indosinian thrusting orogenic belt. The other fluid of allogenic recharge related to the later fills is the main lateral freshwater flow dominated by external runoff from the catchment in the setting of the horst-lowland within the rifting basin, induced by the Yanshanian destruction of the North China Craton. Finally, the relationship between the three fracture families and two kinds of related fluids is revealed. This allows us to propose a model to understand the polyphase-superimposed fracture-related karst reservoir complexes within the deep carbonate basement of tilting fault blocks that neighbour the Bozhong hydrocarbon kitchen and predict the formation of potential plays with high accuracy.展开更多
The Asmari Formation in the G oilfield on the Iran-Iraq border is a fractured-porous multi-lithology mixed reservoir, for which fracture is an important factor affecting oil productivity and water cut. The characteriz...The Asmari Formation in the G oilfield on the Iran-Iraq border is a fractured-porous multi-lithology mixed reservoir, for which fracture is an important factor affecting oil productivity and water cut. The characterization and modeling of fractures in the carbonate reservoir of G oilfield are challenging due to weak conventional well log responses of fractures and a lack of specific logs, such as image logs. This study proposes an integrated approach for characterizing and modeling fractures in the carbonate reservoir. The features, formation mechanism, influencing factors, and prediction methods of fractures in the Asmari Formation carbonate reservoirs of G oilfield were studied using core observation, thin section, image log, cross-dipole acoustic log (CDAL), geomechanics numerical simulation (GNS), and production data. According to CDAL-based fracture density interpretation, GNS-based fracture intensity prediction between wells, and DFN-based rock fracture properties modeling, the quantitative fracture characterization for G oilfield was realized. This research shows that the fractures in the Asamri Formation are mainly medium-to high-angle shear fractures. The substantial compression stress during the Miocene played a major role in the formation of the prominent fractures and determined their trend in the region, with primary trends of NNW-SSE and NNE-SSW. The fracture distribution has regularity, and the fractures in zone A dolomites are more highly developed than that in zone B limestones vertically. Horizontally, fractures intensity is mainly controlled by faults and structural location. The results of this study may benefit the optimization of well design during field development. From 2019 to 2021, three horizontal wells pilot tests were deployed in the fractures belt in zone A, and these fractures prominently increased the permeability of tight dolomite reservoirs. The initial production of the wells is four to five times the average production of other wells in the area, showing a good development effect. Meanwhile, the updated numerical simulation validates that the history match accuracy of water cut based on the dual-porosity model is significantly improved, proving the fracture evaluation and prediction results to be relatively reliable and applicable.展开更多
As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoy...As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoyuzhuang,Yangzhuang,Wumishan,Hongshuizhuang,and Tieling formations.The characteristics,formation periods,and controlling factors of reservoir tectonic fractures have been determined based on analyses of outcrops,cores,thin sections,and image logs.The results show that unfilled fractures account for over 87% and most tectonic fractures are high-angle shear fractures with angles concentrated at 40°to 70°and the fracture porosity increases linearly with an increased fracture aperture.Within the same tectonic setting and stress field,the lithology and layer thickness are the dominant factors governing the development of tectonic fractures,which are the most developed in dolomites and thin layers.Tectonic fractures were most likely formed in regions near faults or areas with larger stress gradients.The tectonic fractures in the carbonate geothermal reservoirs are roughly divided into four sets:NNW-SSE and NNE-SSW oriented‘X’-conjugated shear fractures formed from the Paleozoic to the pre-Yanshanian Movement;NE-SW-oriented shear fractures,formed in episode B of the Yanshanian Movement,occurred at the Early Cretaceous;nearly E-W-oriented tensional fractures formed in the late Yanshanian Movement at the Late Cretaceous to Paleogene,and NEE-SW-oriented shear fractures formed during the Himalayan movement.展开更多
The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geoch...The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity.展开更多
Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Wes...Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.展开更多
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi...Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.展开更多
In order to evaluate the stress sensitivity of carbonate reservoirs,a series of rock stress sensitivity tests were carried out under in-situ formation temperature and stress condition.Based on the calibration of capil...In order to evaluate the stress sensitivity of carbonate reservoirs,a series of rock stress sensitivity tests were carried out under in-situ formation temperature and stress condition.Based on the calibration of capillary pressure curve,the variable fractal dimension was introduced to establish the conversion formula between relaxation time and pore size.By using the nuclear magnetic resonance(NMR)method,the pore volume loss caused by stress sensitivity within different scales of pore throat was quantitatively analyzed,and the microscopic mechanism of stress sensitivity of carbonate gas reservoirs was clarified.The results show that fractures can significantly affect the stress sensitivity of carbonate reservoirs.With the increase of initial permeability,the stress sensitivity coefficient decreases and then increases for porous reservoirs,but increases monotonously for fractured-porous reservoirs.The pore volume loss caused by stress sensitivity mainly occurs for mesopores(0.02–0.50μm),contributing more than 50%of the total volume loss.Single high-angle fracture contributes 9.6%of the stress sensitivity and 15.7%of the irreversible damage.The microscopic mechanism of the stress sensitivity of carbonate gas reservoirs can be concluded as fracture closure,elastic contraction of pores and plastic deformation of rock skeleton.展开更多
The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and frac...The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising.展开更多
The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control ...The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control factors, is covered with thick salt, all of which result in the serious distortion of reflection time and amplitudes under the salt, the poor seismic imaging, and the low S/N ratio and resolution. The key to developing this kind of reservoir is to correctly predict the distribution of highly profitable oil zones. In this paper we start by analyzing the master control factors, perform seismic-log calibration, optimize the seismic attributes indicating the lithofacies, karst, petrophysical properties, and fractures, and combine these results with the seismic, geology, log, oil reservoir engineering, and well data. We decompose the seismic prediction into six key areas: structural interpretation, prediction of lithofacies, karst, petrophysical properties, fractures, and then perform an integrated assessment. First, based on building the models of faults and fractures, sedimentary facies, and karst, we predict the distribution of the most favorable reservoir zones qualitatively. Then, using multi-parameter inversion and integrated multi-attribute analysis, we predict the favorable reservoir distribution quantitatively and semi-quantitatively to clarify the distribution of high-yield zones. We finally have a reliable basis for optimal selection of exploration and development targets.展开更多
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金supported by the National Natural Science Foundation of China(No.U21B2062)the Natural Science Foundation of Hubei Province(No.2023AFB307)。
文摘Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.
基金funded by the National Natural Science Foundation of China(Grant No.42002134)China Postdoctoral Science Foundation(Grant No.2021T140735).
文摘Identifying fractures along a well trajectory is of immense significance in determining the subsurface fracture network distribution.Typically,conventional logs exhibit responses in fracture zones,and almost all wells have such logs.However,detecting fractures through logging responses can be challenging since the log response intensity is weak and complex.To address this problem,we propose a deep learning model for fracture identification using deep forest,which is based on a cascade structure comprising multi-layer random forests.Deep forest can extract complex nonlinear features of fractures in conventional logs through ensemble learning and deep learning.The proposed approach is tested using a dataset from the Oligocene to Miocene tight carbonate reservoirs in D oilfield,Zagros Basin,Middle East,and eight logs are selected to construct the fracture identification model based on sensitivity analysis of logging curves against fractures.The log package includes the gamma-ray,caliper,density,compensated neutron,acoustic transit time,and shallow,deep,and flushed zone resistivity logs.Experiments have shown that the deep forest obtains high recall and accuracy(>92%).In a blind well test,results from the deep forest learning model have a good correlation with fracture observation from cores.Compared to the random forest method,a widely used ensemble learning method,the proposed deep forest model improves accuracy by approximately 4.6%.
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
文摘Investigating the formation mechanisms of carbonate geothermal reservoirs is of theoretical and practical significance for summarizing the formation pattern of geothermal resources and further guiding their effective exploitation.The Beijing-Tianjin-Hebei Plain(BTHP),predominantly located within the Jizhong Depression and Cangxian Uplift in the Bohai Bay Basin,serves as the primary region for geothermal exploitation and utilization in China.More than 1500 geothermal wells have been drilled therein,with water temperature at the wellhead ranging from 55 to 110°C,single-well flow rate ranging between 80 and 120 m^(3)/h,and cumulative heating area exceeding 100×10^(6)m^(3).However,the exploration and research in the region remain limited overall.As per the previous geothermal and petroleum exploration results and the latest geothermal drilling data,this study comprehensively evaluated the geothermal resources of karst geothermal reservoirs.The results show that two suites of carbonate karst reservoirs,namely the Jxw Formation and the Ordovician strata,have primarily developed in the BTHP,and their formation and evolution can be divided into four stages:the Mesoproterozoic-Early Paleozoic stage with carbonate sedimentation and the development of interlayer karst,the Late Paleozoic stage with the development of direct sedimentary cover,the Mesozoic stage with compressional uplifting and development of buried hill karst,and the Cenozoic stage with regional cover deposition and the modification and finalization of karst geothermal reservoirs.Accordingly,the porosity evolution history of the geothermal reservoirs is composed of three stages,namely a significant decrease followed by a minor increase,a gradual decline,and then a small fluctuation from increase to decrease before slowly rising again.The karstification in geothermal reservoirs can be summarized into quasi-syngenetic karstification,epigenetic karstification,and burial karstification,which can be subdivided into seven subcategories.The carbonate geothermal reservoirs in the study area boast total geothermal resources of 53.821×10^(9)GJ,or 184.155×10^(9)t of standard coal equivalent(tce),and the annual exploitable geothermal resources in the urban area can heat an area of(400‒500)×10^(6)m^(3),indicating great potential of geothermal exploitation.
基金Supported by the Major Science and Technology Project of CNPC(2023ZZ19-01).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.
基金Engineering and Physical Sciences Research CouncilGrant/Award Number:EP/M000567/1。
文摘Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevated temperature conditions has been limited so far.Our study uses batch reactor experiments at 100℃ to investigate the dissolution of andesite rock samples obtained from an active geothermal reservoir in Sumatra(Indonesia).The samples are subjected to reactions with neutral-pH fluids and acidic fluids,mimicking the geochemical responses upon reinjection of geothermal fluids,either without or with dissolved acidic gases,respectively.Chemical elemental analysis reveals the release of Ca^(2+)ions into the fluids through the dissolution of feldspar.The overall dissolution rate of the rock samples is 2.4×10^(–11)to 4.2×10^(–11)mol/(m^(2)·s),based on the Si release during the initial 7 h of the experiment.The dissolution rates are about two orders of magnitude lower than those reported for basaltic rocks under similar reaction conditions.This study offers valuable insights into the potential utilization of andesite reservoirs for effective CO_(2) storage via mineralization.
基金funded by the Science and Technology Project of Changzhou City(Grant No.CJ20210120)the Research Start-up Fund of Changzhou University(Grant No.ZMF21020056).
文摘The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in the study area,combined with the current trends and advances in well log interpretation techniques for carbonate reservoirs,a log interpretation technology route of“geological information constraint+deep learning”was developed.The principal component analysis(PCA)was employed to establish lithology identification criteria with an accuracy of 91%.The Bayesian stepwise discriminant method was used to construct a sedimentary microfacies identification method with an accuracy of 90.5%.Based on production data,the main lithologies and sedimentary microfacies of effective reservoirs were determined,and 10 petrophysical facies with effective reservoir characteristics were identified.Constrained by petrophysical facies,the mean interpretation error of porosity compared to core analysis results is 2.7%,and the ratio of interpreted permeability to core analysis is within one order of magnitude,averaging 3.6.The research results demonstrate that deep learning algorithms can uncover the correlation in carbonate reservoir well logging data.Integrating geological and production data and selecting appropriate machine learning algorithms can significantly improve the accuracy of well log interpretation for carbonate reservoirs.
基金the National Key R&D Program of China(No.2019YFB1504102).
文摘Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010204).
文摘The Ordovician reservoirs in the Tahe oilfield are dominated by fractured-vuggy carbonate reservoirs, of which fault-karst reservoirs are a hot topic in recent years. Fault-karst reservoirs feature high production, large burial depth, and strong heterogeneity under the control of faulting and karstification. Based on geological, logging, and seismic data, this study classified the Ordovician fault-karst reservoirs in the Yuejin block of the Tahe oilfield into three types, namely karst-cave, dissolved-vug, and fractured types, and established the integrated identification criteria of the three types of reservoirs. This study characterized karst caves, dissolved vugs, and multi-scale faults through seismic wave impedance inversion and frequency-domain detection of multi-scale faults. 3D geological models of different types of reservoirs were built using the combined deterministic and stochastic methods and characterized the spatial distribution of multi-scale faults, karst caves, dissolved vugs, and physical property parameters of reservoir. This study established the method for the geological modeling of fault-karst reservoirs, achieved the quantitative characterization and revealed the heterogeneity of fault-karst reservoirs. The karst-cave and dissolved-vug types are high in porosity and act as reservoirs, while the fractured type is high in permeability and act as flow pathway. This study lays the foundation for the development index prediction, well emplacement, and efficient development of the fault-karst carbonate reservoirs.
基金This work was supported by the National Major Science and Technology Project of the Thirteenth Five Year Plan(No.2016zX05024-003-010)National Natural Science Foundation of China(No.42002123)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu Univerisity of Technology,No.PLC2020031).
文摘The Palaeozoic carbonate basement of the Offshore Bohai Bay Basin (OBBB) presents considerable potential for hydrocarbon exploration. However, the multistage tectonism and complex superimposed palaeo-karstification in the area are unclear, which leads to a lack of understanding on the formation mechanism and distribution of the deep carbonate basement reservoirs. In this study, the occurrence of a fracture-vug network and its fillings in carbonate reservoirs were investigated based on borehole cores, thin sections, and image logs from the southwestern slope of the OBBB's Bozhong Sag. Then the diagenetic fluid properties of the carbonate matrix and fillings were analysed via the data of carbon, oxygen, and strontium isotopes, and major, rare elements from coring intervals. The results revealed that fracture-related karst reservoirs have lithologic selectivity inclined toward dolomite strata. The intersecting relationships, widths, and strikes of the fractures and the regional tectonic background indicate three structural fracture families: NW-, NNE-, and NNW- trending, related to the Indosinian, middle Yanshanian, and late Yanshanian orogeny, respectively. The Indosinian NW- and end-Mesozoic NNE-trending fractures produced by compressional tectonic stress mainly contributed to the formation of the basement reservoirs. The geochemistry of the calcite veins filling these fractures suggests two main types of diagenetic fluids. The fluid of autogenic recharge related to the earlier fills is karstification diffuse flow dominated by internal runoff from rainfall in the highland setting of the Indosinian thrusting orogenic belt. The other fluid of allogenic recharge related to the later fills is the main lateral freshwater flow dominated by external runoff from the catchment in the setting of the horst-lowland within the rifting basin, induced by the Yanshanian destruction of the North China Craton. Finally, the relationship between the three fracture families and two kinds of related fluids is revealed. This allows us to propose a model to understand the polyphase-superimposed fracture-related karst reservoir complexes within the deep carbonate basement of tilting fault blocks that neighbour the Bozhong hydrocarbon kitchen and predict the formation of potential plays with high accuracy.
基金supported by the National Science and Technology Major Project“Reservoir Characterization of Typical Thick Carbonate Reservoirs in the Middle East”(Grant No.2017ZX05032004-001).
文摘The Asmari Formation in the G oilfield on the Iran-Iraq border is a fractured-porous multi-lithology mixed reservoir, for which fracture is an important factor affecting oil productivity and water cut. The characterization and modeling of fractures in the carbonate reservoir of G oilfield are challenging due to weak conventional well log responses of fractures and a lack of specific logs, such as image logs. This study proposes an integrated approach for characterizing and modeling fractures in the carbonate reservoir. The features, formation mechanism, influencing factors, and prediction methods of fractures in the Asmari Formation carbonate reservoirs of G oilfield were studied using core observation, thin section, image log, cross-dipole acoustic log (CDAL), geomechanics numerical simulation (GNS), and production data. According to CDAL-based fracture density interpretation, GNS-based fracture intensity prediction between wells, and DFN-based rock fracture properties modeling, the quantitative fracture characterization for G oilfield was realized. This research shows that the fractures in the Asamri Formation are mainly medium-to high-angle shear fractures. The substantial compression stress during the Miocene played a major role in the formation of the prominent fractures and determined their trend in the region, with primary trends of NNW-SSE and NNE-SSW. The fracture distribution has regularity, and the fractures in zone A dolomites are more highly developed than that in zone B limestones vertically. Horizontally, fractures intensity is mainly controlled by faults and structural location. The results of this study may benefit the optimization of well design during field development. From 2019 to 2021, three horizontal wells pilot tests were deployed in the fractures belt in zone A, and these fractures prominently increased the permeability of tight dolomite reservoirs. The initial production of the wells is four to five times the average production of other wells in the area, showing a good development effect. Meanwhile, the updated numerical simulation validates that the history match accuracy of water cut based on the dual-porosity model is significantly improved, proving the fracture evaluation and prediction results to be relatively reliable and applicable.
基金funded by the National Key Research and Development Program of China(Grant No.2019YFB1504101)the Natural Science Foundation of Hebei Province,China(Grant No.D2021504041)。
文摘As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoyuzhuang,Yangzhuang,Wumishan,Hongshuizhuang,and Tieling formations.The characteristics,formation periods,and controlling factors of reservoir tectonic fractures have been determined based on analyses of outcrops,cores,thin sections,and image logs.The results show that unfilled fractures account for over 87% and most tectonic fractures are high-angle shear fractures with angles concentrated at 40°to 70°and the fracture porosity increases linearly with an increased fracture aperture.Within the same tectonic setting and stress field,the lithology and layer thickness are the dominant factors governing the development of tectonic fractures,which are the most developed in dolomites and thin layers.Tectonic fractures were most likely formed in regions near faults or areas with larger stress gradients.The tectonic fractures in the carbonate geothermal reservoirs are roughly divided into four sets:NNW-SSE and NNE-SSW oriented‘X’-conjugated shear fractures formed from the Paleozoic to the pre-Yanshanian Movement;NE-SW-oriented shear fractures,formed in episode B of the Yanshanian Movement,occurred at the Early Cretaceous;nearly E-W-oriented tensional fractures formed in the late Yanshanian Movement at the Late Cretaceous to Paleogene,and NEE-SW-oriented shear fractures formed during the Himalayan movement.
基金supported by the National Natural Science Foundation of China(Nos.42172148,41830431,and 41902127).
文摘The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity.
基金funded by the National Key Research and Development Program(Grant No.2018YFC0807804-2)。
文摘Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
基金supported by the Energy Efficiency&Resources(No.20212010200010)the“Development of Intelligential Diagnosis,Abandonment Process and Management Technology for Decrepit Oil and Gas Wells”(No.20216110100010)of the Korea Institute of Energy Technology EvaluationPlanning(KETEP)grant funded by the Korean Government Ministry of Trade,Industry&Energy.
文摘Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.
基金Supported by the PetroChina Technological Research Project(2021DJ3301)Scientific Research Project of Shaanxi Provincial Department of Education,China(20JK0848)。
文摘In order to evaluate the stress sensitivity of carbonate reservoirs,a series of rock stress sensitivity tests were carried out under in-situ formation temperature and stress condition.Based on the calibration of capillary pressure curve,the variable fractal dimension was introduced to establish the conversion formula between relaxation time and pore size.By using the nuclear magnetic resonance(NMR)method,the pore volume loss caused by stress sensitivity within different scales of pore throat was quantitatively analyzed,and the microscopic mechanism of stress sensitivity of carbonate gas reservoirs was clarified.The results show that fractures can significantly affect the stress sensitivity of carbonate reservoirs.With the increase of initial permeability,the stress sensitivity coefficient decreases and then increases for porous reservoirs,but increases monotonously for fractured-porous reservoirs.The pore volume loss caused by stress sensitivity mainly occurs for mesopores(0.02–0.50μm),contributing more than 50%of the total volume loss.Single high-angle fracture contributes 9.6%of the stress sensitivity and 15.7%of the irreversible damage.The microscopic mechanism of the stress sensitivity of carbonate gas reservoirs can be concluded as fracture closure,elastic contraction of pores and plastic deformation of rock skeleton.
文摘The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising.
文摘The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control factors, is covered with thick salt, all of which result in the serious distortion of reflection time and amplitudes under the salt, the poor seismic imaging, and the low S/N ratio and resolution. The key to developing this kind of reservoir is to correctly predict the distribution of highly profitable oil zones. In this paper we start by analyzing the master control factors, perform seismic-log calibration, optimize the seismic attributes indicating the lithofacies, karst, petrophysical properties, and fractures, and combine these results with the seismic, geology, log, oil reservoir engineering, and well data. We decompose the seismic prediction into six key areas: structural interpretation, prediction of lithofacies, karst, petrophysical properties, fractures, and then perform an integrated assessment. First, based on building the models of faults and fractures, sedimentary facies, and karst, we predict the distribution of the most favorable reservoir zones qualitatively. Then, using multi-parameter inversion and integrated multi-attribute analysis, we predict the favorable reservoir distribution quantitatively and semi-quantitatively to clarify the distribution of high-yield zones. We finally have a reliable basis for optimal selection of exploration and development targets.