期刊文献+
共找到6,086篇文章
< 1 2 250 >
每页显示 20 50 100
The Influence of Limestone Powder and Metakaolin Co-Blending on the Hydration Process and Mechanical Properties of Q-Phase Cement
1
作者 XIONG Xuan HE Yongjia +2 位作者 LÜLinnü MA Jie WANG Fazhou 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1169-1176,共8页
A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated ... A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated and compared with pure Q-phase cement.The results indicate that the ternary system exhibits exceptional and sustained compressive strength even under a 40℃environment,significantly outperforming pure Q-phase.The mechanism lies in that metakaolin effectively inhibits the transformation of metastable phase.Meanwhile,the interactions among Q-phase,limestone,and metakaolin further enhance the cementitious performance.The ternary system effectively addresses potential issues of strength loss in Q-phase cement application,and as a low-carbon cementitious material system,it holds promising potential applications. 展开更多
关键词 Q-phase limestone METAKAOLIN HYDRATION compressive strength
下载PDF
Graph theoretical analysis of limestone fracture network damage patterns based on uniaxial compression test
2
作者 Mingyang Wang Congcong Wang +2 位作者 Enzhi Wang Xiaoli Liu Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3485-3510,共26页
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m... The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks. 展开更多
关键词 MOTIF Fracture network Topological property Damage resistance limestone
下载PDF
Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process
3
作者 Yufeng Guo Jinlai Zhang +5 位作者 Shuai Wang Jianjun Fan Haokun Li Feng Chen Kuo Liu Lingzhi Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期485-497,共13页
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or... The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed. 展开更多
关键词 fluxed iron ore pellet limestone HEMATITE QUARTZ diffusion reaction
下载PDF
Water-induced physicochemical and pore changes in limestone for surrounding rock across pressure aquifers
4
作者 WU Daguo PENG Jianhe XIA Zhenzhao 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3186-3200,共15页
Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwate... Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion. 展开更多
关键词 Water rock reaction Geochemistry Osmotic pressure Pore scale study limestone Pressure aquifer
下载PDF
Effect of diagenetic variation on the static and dynamic mechanical behavior of coral reef limestone
5
作者 Linjian Ma Jiajun Deng +3 位作者 Mingyang Wang Jianping Wang Bin Fang Jiawen Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期893-908,共16页
Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure... Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking. 展开更多
关键词 Reef limestone Dynamic behavior Mineral composition Pore structure Wave propagation Energy dissipation
下载PDF
Coupling relationship and genetic mechanisms of shelf-edge delta and deep-water fan source-to-sink:A case study in Paleogene Zhuhai Formation in south subsag of Baiyun Sag,Pearl River Mouth Basin,China
6
作者 TANG Wu XIE Xiaojun +5 位作者 XIONG Lianqiao GUO Shuai XU Min XU Enze BAI Haiqiang LIU Ziyu 《Petroleum Exploration and Development》 SCIE 2024年第3期589-603,共15页
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high... The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area. 展开更多
关键词 shelf-edge delta deep-water fan source-to-sink system Paleogene Zhuhai Formation Baiyun Sag Pearl River Mouth Basin
下载PDF
Dominance of rock exposure and soil depth in leaf trait networks outweighs soil quality in karst limestone and dolomite habitats
7
作者 Min Jiao Jiawei Yan +3 位作者 Ying Zhao Tingting Xia Kaiping Shen Yuejun He 《Forest Ecosystems》 SCIE CSCD 2024年第5期632-641,共10页
Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential comm... Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat. 展开更多
关键词 Leaf trait networks Functional traits Woody plant community KARST DOLOMITE limestone
下载PDF
Application of fluid modulus inversion to complex lithology reservoirs in deep-water areas
8
作者 Zhaoming Chen Huaxing Lyu +2 位作者 Zhongtao Zhang Yanhui Zhu Baojun Liu 《Energy Geoscience》 EI 2024年第1期153-161,共9页
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti... It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks. 展开更多
关键词 Fluid identification Seismic fluid factor Solid-liquid decoupling deep-water area Complex lithology reservoir
下载PDF
A machine learning-based strategy for predicting the mechanical strength of coral reef limestone using X-ray computed tomography
9
作者 Kai Wu Qingshan Meng +4 位作者 Ruoxin Li Le Luo Qin Ke ChiWang Chenghao Ma 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2790-2800,共11页
Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL... Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL. 展开更多
关键词 Coral reef limestone(CRL) Machine learning Pore tensor X-ray computed tomography(CT)
下载PDF
Hydrocarbon generation and organic matter enrichment of limestone in a lacustrine mixed sedimentary environment: A case study of the Jurassic Da'anzhai member in the central Sichuan Basin, SW China 被引量:1
10
作者 Qi-Lu Xu Bo Liu +4 位作者 Xin-Min Song Qing-Ping Wang Xu-Dong Chen Yang Li Yu Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期670-688,共19页
The hydrocarbon generation effectiveness of lacustrine limestone has been gradually proven. The Da'anzhai Member limestone is the most important Jurassic oil-producing layer in the central Sichuan Basin, and the c... The hydrocarbon generation effectiveness of lacustrine limestone has been gradually proven. The Da'anzhai Member limestone is the most important Jurassic oil-producing layer in the central Sichuan Basin, and the characteristics of limestone organic matter are often overlooked. 175 typical samples of different lithologies from 19 wells were systematically analyzed to determine hydrocarbon generation, controlling factors and formation models by analyses of organic matter, minerals, elements, isotopes and petrography. (1) Lacustrine paleoenvironments can be beneficial for the enrichment of organic matter in limestone. A favorable environment would be a quiet, low-energy zone in a warm and humid climate with an appropriate supply of terrestrial inputs. (2) Lacustrine limestone has a higher organic matter conversion rate, and a lower hydrocarbon generation threshold than argillaceous source rocks, and can be effective source rock. (3) The mud-bearing shell limestone from the forebeach to the lake slope is thick, with a relatively high abundance of organic matter, and its hydrocarbon generation is effective. This study can clarify the effectiveness and enrichment of the limestone organic matters in the study area, and contribute to an understanding of hydrocarbon generation for full-rock system in a lacustrine mixed sedimentary environment. 展开更多
关键词 Lacustrine limestone Full-rock system Organic matter evaluation PALEOENVIRONMENTS Lake evolution Terrestrial inputs
下载PDF
Meso-mechanical anisotropy and fracture evolution of reef limestones from the Maldives Islands and the South China Sea 被引量:1
11
作者 Lihui Li Chenglong Li +3 位作者 Beixiu Huang Jianguang Li Shouding Li Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3173-3187,共15页
Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conv... Reef limestone is a biogenic sedimentary rock widely distributed in coral reef areas, acting as an important foundation for coast construction. Due to its special biogenic origin, reef limestone is different from conventional rocks both in terms of rock structure and mechanical properties. In this study, mesoscale uniaxial compression experiments with five different loading directions were conducted on two kinds of reef limestones from the Maldives Islands and the South China Sea, respectively. The real-time high-resolution videos and images of failure processes were recorded simultaneously to investigate the fracture evolution and fracture surface roughness of reef limestones. It demonstrated that the reef limestones belonged to extremely soft to soft rocks, and their uniaxial compressive strength (UCS) values fluctuated with high discreteness. The mesoscale mechanical properties of reef limestones were highly anisotropic and mainly controlled by pore structure. The occurrence of dissolution pores in reef limestone tended to intensify mechanical anisotropy. With the integration of the fracture initiation and propagation features of reef limestones, it is supposed that the intrinsic mechanism of anisotropy was probably attributed to the differences in coral growth direction and dissolution. Furthermore, the quantified fracture surface roughness was revealed to have a good consistency with density and UCS for the reef limestones from the South China Sea. The findings are helpful for providing theoretical and experimental references for engineering construction in coral reef areas. 展开更多
关键词 Reef limestone Mechanical anisotropy Failure mode Pore structure Fracture surface roughness
下载PDF
Structural characteristics and deep-water hydrocarbon accumulation model of the Scotian Basin, Eastern Canada 被引量:1
12
作者 Gaokui Wu Fanjun Kong +2 位作者 Naxin Tian Tianbi Ma Chongzhi Tao 《Energy Geoscience》 2023年第3期71-79,共9页
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is s... Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin. 展开更多
关键词 Transform fault Salt tectonic Hydrocarbon accumulation model deep-water turbidite sandstone Scotian basin
下载PDF
Sedimentary elements,evolutions and controlling factors of the Miocene channel system:a case study of the deep-water Taranaki Basin in New Zealand
13
作者 Guangxu Wang Wei Wu +5 位作者 Changsong Lin Quan Li Xiaoming Zhao Yongsheng Zhou Weiqing Liu Shiqin Liang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第11期44-58,共15页
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a... Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world. 展开更多
关键词 deep-water channel system channel geomorphology sedimentary evolution climate and region tectonic activities deep-water Taranaki Basin
下载PDF
Effect of High Content Limestone Powder on Microstructure and Mechanical Properties of Cement-based Materials
14
作者 陈梦梦 何永佳 +1 位作者 吕林女 ZHANG Xulong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期557-566,共10页
Compared with the control sample without limestone powder(LP), the mechanical properties of the sample with 30% LP can be significantly improved by using a small amount of water reducer to reduce the water-cement rati... Compared with the control sample without limestone powder(LP), the mechanical properties of the sample with 30% LP can be significantly improved by using a small amount of water reducer to reduce the water-cement ratio, without significantly affecting the fluidity of the fresh mixture and increasing the economic cost. In addition, compared with the sole addition of limestone powder, dual addition of metakaolin and limestone powder can effectively improve the strengths. The reason of this phenomenon was investigated by means of XRD, TG-DTG, SEM, LF-NMR and isothermal calorimetry, etc. The reactive aluminum-rich phases in metakaolin react with limestone powder in the hydration process, and the formed calcium carboaluminate reduces the porosity and makes the hardened paste denser. The addition of ground granulated blast furnace slag can also improve the strength of the specimen added with limestone powder, whereas, the effect is inferior to that of metakaolin, for the ground granulated blast furnace slag contains less reactive aluminate phases, and accordingly, the amount of calcium carboaluminate generated is lower than that of metakaolin. 展开更多
关键词 limestone powder aluminum-rich phase mineral admixture calcium carboaluminate
下载PDF
Quantitative morphometric analysis of a deep-water channel in the Taranaki Basin, New Zealand
15
作者 Wei Wu Guangxu Wang +4 位作者 Changsong Lin Weiqing Liu Quan Li Zhendong Feng Shuyuan Ning 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期42-56,共15页
The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the... The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties. 展开更多
关键词 QUATERNARY deep-water channel geometrical morphology quantitative analysis Taranaki Basin New Zealand
下载PDF
The formation of orthogonal joint systems and cuboidal blocks:New insights gained from flat-lying limestone beds in the region of Havre-Saint-Pierre(Quebec,Canada)
16
作者 Shaocheng Ji Yvéric Rousseau +1 位作者 Denis Marcotte Noah John Phillips 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3079-3093,共15页
Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat... Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural setting.In the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 approximately.The joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block size.The high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic fractures.The presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of fracture.This research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks. 展开更多
关键词 Plato's cuboids Orthogonal joints Fracture spacing limestone Layered rock mechanics Appalachian geology
下载PDF
Production of an Eco-Cement by Clinker Substitution by the Mixture of Calcined Clay and Limestone, Songololo (DR Congo)
17
作者 Guyghens Bongwele Onanga Eric Kisonga Manuku +4 位作者 Riadh Ben Khalifa Daddy Patrick Ilito Lofongo Alain Preat Valentin Kanda Nkula Dominique Wetshondo Osomba 《Journal of Geoscience and Environment Protection》 2023年第7期67-80,共14页
Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of indus... Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials. 展开更多
关键词 CLAY Calcined Clay limestone Cement ECO-CEMENT Songololo
下载PDF
Geochemistry of the Aptian bituminous limestones in Gümuü?hane area,Eastern Black Sea region:new insight into paleogeography and paleoclimate conditions
18
作者 Merve Ozyurt 《Acta Geochimica》 EI CAS CSCD 2023年第6期971-987,共17页
Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Ea... Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey. 展开更多
关键词 Aptian PALEOCLIMATE Sedimentary conditions GEOCHEMISTRY REE C and O isotopes limestone Eastern Black Sea
下载PDF
Preparation of High Activity Admixture from Steel Slag,Phosphate Slag and Limestone Powder
19
作者 Ying Ji Xi Liu 《Journal of Renewable Materials》 EI 2023年第11期3977-3989,共13页
The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most o... The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking. 展开更多
关键词 Steel slag phosphorus slag limestone powder high activity admixture solid waste
下载PDF
Theoretical and technical progress in exploration practice of the deep-water large oil fields, Santos Basin, Brazil
20
作者 HE Wenyuan SHI Buqing +6 位作者 FAN Guozhang WANG Wangquan WANG Hongping WANG Jingchun ZUO Guoping WANG Chaofeng YANG Liu 《Petroleum Exploration and Development》 SCIE 2023年第2期255-267,共13页
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g... The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions. 展开更多
关键词 lacustrine carbonates salt rock deep-water oilfield igneous rock identification reservoir prediction hydrocar-bon detection supercritical CO_(2) Santos Basin Brazil
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部