The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is s...Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.展开更多
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a...Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.展开更多
The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the...The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties.展开更多
目的探讨基于MRI的椎体骨质量评分(vertebral bone quality score,VBQ)和终板骨质量评分(endplate bone quality score,EBQ)在经椎间孔腰椎椎间融合(transforaminal lumbar interbody fusion,TLIF)术后cage沉降中的预测价值。方法因腰...目的探讨基于MRI的椎体骨质量评分(vertebral bone quality score,VBQ)和终板骨质量评分(endplate bone quality score,EBQ)在经椎间孔腰椎椎间融合(transforaminal lumbar interbody fusion,TLIF)术后cage沉降中的预测价值。方法因腰椎退行性疾病在我院行TLIF手术的226例患者,根据术后有无cage沉降将患者分为沉降组和非沉降组,比较两组患者VBQ和EBQ评分。通过多元回归分析cage沉降的危险因素,并根据受试者工作特征曲线下面积(AUC)评估VBQ和EBQ预测TLIF术后cage沉降的能力。结果226例患者中30例出现术后cage沉降。沉降组VBQ(3.8±0.4)分,EBQ(5.1±0.7)分,明显高于非沉降组(3.1±0.6)分和(4.2±1.0)分,差异有统计学意义(P<0.001)。多元回归分析显示VBQ(OR=4.258,95%CI:1.983~9.142,P<0.001)和EBQ(OR=1.971,95%CI:1.212~3.203,P=0.006)评分越高,发生cage沉降风险也越大。受试者工作特征曲线结果显示VBQ的AUC为0.843,EBQ的AUC是0.864。VBQ和EBQ预测cage沉降的最佳阈值分别为3.480(敏感性90%;特异性75.5%)和4.620(敏感性96.7%;特异性74.5%)。结论术前VBQ或EBQ评分越高,TLIF术后发生cage沉降风险越大。其中EBQ可能是一个更好的预测融合术后cage沉降的指标。展开更多
目的:探讨后路寰枢椎侧块关节cage植骨融合内固定术治疗难复性寰枢椎脱位的临床疗效,并与经口咽松解后路复位固定融合术进行疗效对比。方法:回顾性分析2018年1月~2022年8月我科采用后路寰枢椎侧块关节cage植骨融合内固定术(23例,cage组...目的:探讨后路寰枢椎侧块关节cage植骨融合内固定术治疗难复性寰枢椎脱位的临床疗效,并与经口咽松解后路复位固定融合术进行疗效对比。方法:回顾性分析2018年1月~2022年8月我科采用后路寰枢椎侧块关节cage植骨融合内固定术(23例,cage组)与经口咽松解后路复位固定融合术(25例,对照组)治疗的难复性寰枢椎脱位患者的临床资料,cage组男8例,女15例,年龄9~79岁(48.35±14.38岁);对照组男6例,女19例,年龄21~69岁(47.84±13.51岁)。记录两组患者手术时间、术中出血量、住院时间及并发症情况,术前、术后及末次随访时使用JOA评分评估患者神经功能状态,测量术前、术后及末次随访时的寰齿间距(atlantodental interval,ADI)、齿状突顶点距离Chamberlain线的垂直距离(vertical distance from odon to idprocess to Chamberlain′s line,DOCL)、延髓颈髓角(cervicomedullary angle,CMA)、斜坡枢椎角(clivus-axial angle,CAA),评估寰枢椎复位情况。评估侧块关节cage及后方植骨融合情况。结果:所有患者内固定位置良好,减压充分复位满意,症状均明显缓解,未出现椎动脉损伤和脊髓损伤加重。cage组手术时间133.04±34.04min、术中出血量119.13±54.77mL、住院时间14.74±6.10d,均明显短于或少于对照组(253.20±53.98min、181.20±45.40mL、23.96±5.47d)。cage组术前JOA、ADI、DOCL、CMA、CAA分别为6.33±1.13分、7.31±3.05mm、9.47±3.32mm、122.89°±12.58°、122.02°±12.50°,术后分别为13.04±2.17分、2.18±0.67mm、0.89±1.00mm、148.81°±5.43°、146.70°±9.32°,末次随访时分别为14.89±1.17分、2.09±0.69mm、0.83±0.86mm、149.10°±5.11°、146.89°±8.95°;对照组术前JOA、ADI、DOCL、CMA、CAA分别为6.76±1.21分、7.70±0.97mm、10.56±1.99mm、121.53°±4.87°、123.77°±8.95°,术后分别为13.26±1.32分、1.89±0.50mm、1.13±1.08mm、151.40°±6.15°、149.86°±5.58°,末次随访时分别为15.02±0.88分、1.87±0.44mm、0.87±1.39mm、149.48°±4.06°、149.94°±6.61°,两组术后及末次随访JOA、ADI、DOCL、CMA及CAA均较术前明显改善(P<0.05),术后JOA评分与末次随访相比存在统计学差异(P<0.05),但ADI、DOCL、CMA及CAA无统计学差异(P>0.05)。cage组仅1例切口感染;对照组3例切口感染(口咽2例,后路1例),1例脑脊液漏。两组随访期间内固定在位稳定,末次随访植骨均达到骨性融合,cage组关节间隙高度无丢失。结论:难复性寰枢椎脱位采用后路寰枢椎侧块关节cage植骨融合内固定术与经口咽松解后路复位固定融合术相比疗效相当,但增加了植骨融合位点,能更有效融合,避免了经口手术,减少了手术时间、术中出血量、住院时间及并发症的发生。展开更多
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an...The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.展开更多
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g...The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.展开更多
The semi-hydrogenation of alkyne to form Z-olefins with high conversion and high selectivity is still a huge challenge in the chemical industry.Moreover,flammable and explosive hydrogen as the common hydrogen source o...The semi-hydrogenation of alkyne to form Z-olefins with high conversion and high selectivity is still a huge challenge in the chemical industry.Moreover,flammable and explosive hydrogen as the common hydrogen source of this reaction increases the cost and danger of industrial production.Herein,we connect the photocatalytic hydrogen evolution reaction and the semihydrogenation reaction of alkynes in series and successfully realize the high selective production of Z-alkenes using low-cost,safe,and green water as the proton source.Before the cascade reaction,a series of isomorphic metal–organic cage catalysts(Co_(x)Zn_(8−x)L_(6),x=0,3,4,5,and 8)are designed and synthesized to improve the yield of the photocatalytic hydrogen production.Among them,Co_(5)Zn_(3)L_(6) shows the highest photocatalytic activity,with a H_(2) generation rate of 8.81 mmol g^(−1) h^(−1).Then,Co_(5)Zn_(3)L_(6) is further applied in the above tandem reaction to efficiently reduce alkynes to Z-alkenes under ambient conditions,which can reach high conversion of>98%and high selectivity of>99%,and maintain original catalytic activity after multiple cycles.This“one-pot”tandem reaction can achieve a highly selective and safe stepwise conversion from water into hydrogen into Z-olefins under mild reaction conditions.展开更多
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied o...Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in guest-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-guest complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
To date,there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys.This study focuses on Pd_(82)Si_(18)as the research objec...To date,there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys.This study focuses on Pd_(82)Si_(18)as the research object to further elucidate the underlying mechanism of caged dynamics from multiple perspectives,including the cage's lifetime,atomic local environment,and atomic potential energy.The results reveal that Si atoms exhibit a pronounced cage effect due to the hindrance of Pd atoms,resulting in an anomalous peak in the non-Gaussian parameters.An in-depth investigation was conducted on the caged dynamics differences between fast and slow Si atoms.In comparison to fast Si atoms,slow Si atoms were surrounded by more Pd atoms and occupied lower potential energy states,resulting in smaller diffusion displacements for the slow Si atoms.Concurrently,slow Si atoms tend to be in the centers of smaller clusters with coordination numbers of 9 and 10.During the isothermal relaxation process,clusters with coordination numbers 9 and 10 have longer lifetimes,suggesting that the escape of slow Si atoms from their cages is more challenging.The findings mentioned above hold significant implications for understanding the caged dynamics.展开更多
目的探讨终板体积骨密度(endplate volumetric bone mineral density,EP-vBMD)对侧方入路腰椎融合(lateral lumbar interbody fusion,LLIF)术后Cage沉降的影响。方法选择2018年1月~2020年12月在本院接受LLIF手术治疗的151例患者进行回...目的探讨终板体积骨密度(endplate volumetric bone mineral density,EP-vBMD)对侧方入路腰椎融合(lateral lumbar interbody fusion,LLIF)术后Cage沉降的影响。方法选择2018年1月~2020年12月在本院接受LLIF手术治疗的151例患者进行回顾性分析,收集患者EP-vBMD、椎体体积骨密度(vertebral body volumetric bone mineral density,VB-vBMD)、年龄、性别、体质量指数(body mass index,BMI)、医学共病(糖尿病等)、吸烟、美国麻醉医师协会(american society of anesthesiologists,ASA)评分、查尔森共病指数(charlson comorbidity index,CCI)、手术节段、手术椎体和是否使用后路螺钉固定等资料。根据术后1年患者是否发生Cage沉降,将患者分为Cage沉降组和非沉降组,比较两组患者临床资料差异,将单因素分析P<0.2的变量进一步采用多因素Logsitic回归分析,观察EP-vBMD对终板沉陷的影响。结果Cage沉降患者的VB-vBMD和EP-vBMD水平均低于非Cage沉降患者,差异均有统计学意义(P<0.05)。Cage沉降组患者年龄高于非Cage沉降组患者,差异有统计学意义(P<0.05);Cage沉降组和非Cage沉降组患者性别、吸烟、糖尿病、后路螺钉固定等资料差异均有统计学意义(P<0.05)。多因素Logistic回归分析显示,EP-vBMD和应用后路螺钉固定均是Cage沉降的保护性因素(P<0.05)。结论低EP-vBMD是LLIF术后Cage沉降的风险因素,对患者进行LLIF时,应考虑术前EP-vBMD的测量。展开更多
In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynam...In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.展开更多
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, a...Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.展开更多
Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination ...Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.展开更多
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金supported by the National Science and Technology Major Project of China(2016ZX05033)the Project of SINOPEC Science and Technology Department(P19021-2)the Basic Prospective Research Project of SINOPEC(P22214-2).
文摘Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.
基金The National Natural Science Foundation of China under contract Nos 42077410 and 41872112。
文摘Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.
基金The National Natural Science Foundation of China under contract Nos 42077410,41872112 and 42002031the Key Scientific Research Projects in University of Henan Province under contract No.18A170007.
文摘The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties.
文摘目的探讨基于MRI的椎体骨质量评分(vertebral bone quality score,VBQ)和终板骨质量评分(endplate bone quality score,EBQ)在经椎间孔腰椎椎间融合(transforaminal lumbar interbody fusion,TLIF)术后cage沉降中的预测价值。方法因腰椎退行性疾病在我院行TLIF手术的226例患者,根据术后有无cage沉降将患者分为沉降组和非沉降组,比较两组患者VBQ和EBQ评分。通过多元回归分析cage沉降的危险因素,并根据受试者工作特征曲线下面积(AUC)评估VBQ和EBQ预测TLIF术后cage沉降的能力。结果226例患者中30例出现术后cage沉降。沉降组VBQ(3.8±0.4)分,EBQ(5.1±0.7)分,明显高于非沉降组(3.1±0.6)分和(4.2±1.0)分,差异有统计学意义(P<0.001)。多元回归分析显示VBQ(OR=4.258,95%CI:1.983~9.142,P<0.001)和EBQ(OR=1.971,95%CI:1.212~3.203,P=0.006)评分越高,发生cage沉降风险也越大。受试者工作特征曲线结果显示VBQ的AUC为0.843,EBQ的AUC是0.864。VBQ和EBQ预测cage沉降的最佳阈值分别为3.480(敏感性90%;特异性75.5%)和4.620(敏感性96.7%;特异性74.5%)。结论术前VBQ或EBQ评分越高,TLIF术后发生cage沉降风险越大。其中EBQ可能是一个更好的预测融合术后cage沉降的指标。
文摘目的:探讨后路寰枢椎侧块关节cage植骨融合内固定术治疗难复性寰枢椎脱位的临床疗效,并与经口咽松解后路复位固定融合术进行疗效对比。方法:回顾性分析2018年1月~2022年8月我科采用后路寰枢椎侧块关节cage植骨融合内固定术(23例,cage组)与经口咽松解后路复位固定融合术(25例,对照组)治疗的难复性寰枢椎脱位患者的临床资料,cage组男8例,女15例,年龄9~79岁(48.35±14.38岁);对照组男6例,女19例,年龄21~69岁(47.84±13.51岁)。记录两组患者手术时间、术中出血量、住院时间及并发症情况,术前、术后及末次随访时使用JOA评分评估患者神经功能状态,测量术前、术后及末次随访时的寰齿间距(atlantodental interval,ADI)、齿状突顶点距离Chamberlain线的垂直距离(vertical distance from odon to idprocess to Chamberlain′s line,DOCL)、延髓颈髓角(cervicomedullary angle,CMA)、斜坡枢椎角(clivus-axial angle,CAA),评估寰枢椎复位情况。评估侧块关节cage及后方植骨融合情况。结果:所有患者内固定位置良好,减压充分复位满意,症状均明显缓解,未出现椎动脉损伤和脊髓损伤加重。cage组手术时间133.04±34.04min、术中出血量119.13±54.77mL、住院时间14.74±6.10d,均明显短于或少于对照组(253.20±53.98min、181.20±45.40mL、23.96±5.47d)。cage组术前JOA、ADI、DOCL、CMA、CAA分别为6.33±1.13分、7.31±3.05mm、9.47±3.32mm、122.89°±12.58°、122.02°±12.50°,术后分别为13.04±2.17分、2.18±0.67mm、0.89±1.00mm、148.81°±5.43°、146.70°±9.32°,末次随访时分别为14.89±1.17分、2.09±0.69mm、0.83±0.86mm、149.10°±5.11°、146.89°±8.95°;对照组术前JOA、ADI、DOCL、CMA、CAA分别为6.76±1.21分、7.70±0.97mm、10.56±1.99mm、121.53°±4.87°、123.77°±8.95°,术后分别为13.26±1.32分、1.89±0.50mm、1.13±1.08mm、151.40°±6.15°、149.86°±5.58°,末次随访时分别为15.02±0.88分、1.87±0.44mm、0.87±1.39mm、149.48°±4.06°、149.94°±6.61°,两组术后及末次随访JOA、ADI、DOCL、CMA及CAA均较术前明显改善(P<0.05),术后JOA评分与末次随访相比存在统计学差异(P<0.05),但ADI、DOCL、CMA及CAA无统计学差异(P>0.05)。cage组仅1例切口感染;对照组3例切口感染(口咽2例,后路1例),1例脑脊液漏。两组随访期间内固定在位稳定,末次随访植骨均达到骨性融合,cage组关节间隙高度无丢失。结论:难复性寰枢椎脱位采用后路寰枢椎侧块关节cage植骨融合内固定术与经口咽松解后路复位固定融合术相比疗效相当,但增加了植骨融合位点,能更有效融合,避免了经口手术,减少了手术时间、术中出血量、住院时间及并发症的发生。
文摘The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.
基金Supported by the CNPC Basic and Prospective Key Scientific and Technological Project (2021DJ24)。
文摘The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.
基金supported by NSFC(Grant Nos.92061101,22271104,21871141,22225109,and 21901123)the Excellent Youth Foundation of Jiangsu Scientific Committee(BK20211593)+2 种基金the project funded by the China Postdoctoral Science Foundation(2018M630572)the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,the National Key Research and Development Project of China(Grant No.2021YFC2100100)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190694)。
文摘The semi-hydrogenation of alkyne to form Z-olefins with high conversion and high selectivity is still a huge challenge in the chemical industry.Moreover,flammable and explosive hydrogen as the common hydrogen source of this reaction increases the cost and danger of industrial production.Herein,we connect the photocatalytic hydrogen evolution reaction and the semihydrogenation reaction of alkynes in series and successfully realize the high selective production of Z-alkenes using low-cost,safe,and green water as the proton source.Before the cascade reaction,a series of isomorphic metal–organic cage catalysts(Co_(x)Zn_(8−x)L_(6),x=0,3,4,5,and 8)are designed and synthesized to improve the yield of the photocatalytic hydrogen production.Among them,Co_(5)Zn_(3)L_(6) shows the highest photocatalytic activity,with a H_(2) generation rate of 8.81 mmol g^(−1) h^(−1).Then,Co_(5)Zn_(3)L_(6) is further applied in the above tandem reaction to efficiently reduce alkynes to Z-alkenes under ambient conditions,which can reach high conversion of>98%and high selectivity of>99%,and maintain original catalytic activity after multiple cycles.This“one-pot”tandem reaction can achieve a highly selective and safe stepwise conversion from water into hydrogen into Z-olefins under mild reaction conditions.
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-guest electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
基金supported by National Natural Science Foundation of China(No.22278308,22109114 and 22102099)。
文摘Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in guest-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-guest complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
基金Project supported by the National Natural Science Foundation of China (Grant No.51701071)the Natural Science Foundation of Hunan Province,China (Grant Nos.2022JJ50115 and 2021JJ30179)the Research Foundation of the Education Bureau of Hunan Province,China (Grant No.22A0522)。
文摘To date,there is still a lack of a comprehensive explanation for caged dynamics which is regarded as one of the intricate dynamic behaviors in amorphous alloys.This study focuses on Pd_(82)Si_(18)as the research object to further elucidate the underlying mechanism of caged dynamics from multiple perspectives,including the cage's lifetime,atomic local environment,and atomic potential energy.The results reveal that Si atoms exhibit a pronounced cage effect due to the hindrance of Pd atoms,resulting in an anomalous peak in the non-Gaussian parameters.An in-depth investigation was conducted on the caged dynamics differences between fast and slow Si atoms.In comparison to fast Si atoms,slow Si atoms were surrounded by more Pd atoms and occupied lower potential energy states,resulting in smaller diffusion displacements for the slow Si atoms.Concurrently,slow Si atoms tend to be in the centers of smaller clusters with coordination numbers of 9 and 10.During the isothermal relaxation process,clusters with coordination numbers 9 and 10 have longer lifetimes,suggesting that the escape of slow Si atoms from their cages is more challenging.The findings mentioned above hold significant implications for understanding the caged dynamics.
文摘目的探讨终板体积骨密度(endplate volumetric bone mineral density,EP-vBMD)对侧方入路腰椎融合(lateral lumbar interbody fusion,LLIF)术后Cage沉降的影响。方法选择2018年1月~2020年12月在本院接受LLIF手术治疗的151例患者进行回顾性分析,收集患者EP-vBMD、椎体体积骨密度(vertebral body volumetric bone mineral density,VB-vBMD)、年龄、性别、体质量指数(body mass index,BMI)、医学共病(糖尿病等)、吸烟、美国麻醉医师协会(american society of anesthesiologists,ASA)评分、查尔森共病指数(charlson comorbidity index,CCI)、手术节段、手术椎体和是否使用后路螺钉固定等资料。根据术后1年患者是否发生Cage沉降,将患者分为Cage沉降组和非沉降组,比较两组患者临床资料差异,将单因素分析P<0.2的变量进一步采用多因素Logsitic回归分析,观察EP-vBMD对终板沉陷的影响。结果Cage沉降患者的VB-vBMD和EP-vBMD水平均低于非Cage沉降患者,差异均有统计学意义(P<0.05)。Cage沉降组患者年龄高于非Cage沉降组患者,差异有统计学意义(P<0.05);Cage沉降组和非Cage沉降组患者性别、吸烟、糖尿病、后路螺钉固定等资料差异均有统计学意义(P<0.05)。多因素Logistic回归分析显示,EP-vBMD和应用后路螺钉固定均是Cage沉降的保护性因素(P<0.05)。结论低EP-vBMD是LLIF术后Cage沉降的风险因素,对患者进行LLIF时,应考虑术前EP-vBMD的测量。
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)
文摘In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05006-003)the Fundamental Research Funds for the Central Universities (Grant No.14CX06070A)
文摘Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.
文摘Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.