期刊文献+
共找到63,797篇文章
< 1 2 250 >
每页显示 20 50 100
Decade Milestone Advancement of Defect-Engineered g-C_(3)N_(4) for Solar Catalytic Applications 被引量:2
1
作者 Shaoqi Hou Xiaochun Gao +8 位作者 Xingyue Lv Yilin Zhao Xitao Yin Ying Liu Juan Fang Xingxing Yu Xiaoguang Ma Tianyi Ma Dawei Su 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期153-218,共66页
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil... Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis. 展开更多
关键词 defect engineering g-C_(3)N_(4) Electronic band structures Photocarrier transfer kinetics defect states
下载PDF
Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles
2
作者 Zhongqing Zhang Bo Wan +4 位作者 Guicui Fu Yutai Su Zhaoxi Wu Xiangfen Wang Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期441-458,共18页
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t... Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs. 展开更多
关键词 Sintered silver nanoparticles defect types microscopic defect evolution macroscopic crack propagation molecular dynamics simulation cohesive zone model
下载PDF
Impact of Atrial Septal Defect Closure on Mortality in Older Patients
3
作者 Sipawath Khamplod Yodying Kaolawanich +1 位作者 Khemajira Karaketklang Nithima Ratanasit 《Congenital Heart Disease》 SCIE 2024年第1期93-105,共13页
Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and... Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and lower complication rates.However,there is limited evidence regarding the prognosis of ASD closure in older adults.This study aims to evaluate the mortality rates in older ASD patients with and without closure.Methods:A retrospective cohort study was conducted on patients aged 40 years or older with ASD between 2001 and 2017.Patients were followed up to assess all-cause mortality.Univariable and multivariable analyses were performed to identify the predictors of mortality.A p-value of<0.05 was considered statistically significant.Results:The cohort consisted of 450 patients(mean age 56.6±10.4 years,77.3%female),with 66%aged between 40 and 60 years,and 34%over 60 years.Within the cohort,299 underwent ASD closure(201 with transcatheter and 98 with surgical closure).During the median follow-up duration of 7.9 years,51 patients died.The unadjusted cumulative 10-year rate of mortality was 3%in patients with ASD closure,and 28%in patients without ASD closure(log-rank p<0.001).Multivariable analysis revealed that age(hazard ratio[HR]1.04,95%confidence interval[CI]1.006–1.06,p=0.01),NYHA class(HR 2.75,95%CI 1.63–4.62,p<0.001),blood urea nitrogen(BUN)(HR 1.07,95%CI 1.03–1.12,p<0.001),right ventricular systolic pressure(RVSP)(HR 1.07,95%CI 1.003–1.04,p=0.01),and lack of ASD closure(HR 15.12,95%CI 5.63–40.59,p<0.001)were independently associated with mortality.Conclusion:ASD closure demonstrated favorable outcomes in older patients.Age,NYHA class,BUN,RVSP,and lack of ASD closure were identified as independent factors linked to mortality in this population. 展开更多
关键词 Atrial septal defect congenital heart disease defect closure long-term survival MORTALITY
下载PDF
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:1
4
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection 被引量:1
5
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
6
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 defect detection time series deep learning data augmentation data transformation
下载PDF
Software Defect Prediction Method Based on Stable Learning 被引量:1
7
作者 Xin Fan Jingen Mao +3 位作者 Liangjue Lian Li Yu Wei Zheng Yun Ge 《Computers, Materials & Continua》 SCIE EI 2024年第1期65-84,共20页
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti... The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions. 展开更多
关键词 Software defect prediction code visualization stable learning sample reweight residual network
下载PDF
High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells 被引量:1
8
作者 Yu-Su Wang Wen-Hui Chu +4 位作者 Jing-Jie Zhai Wen-Ying Wang Zhong-Mei He Quan-Min Zhao Chun-Yi Li 《World Journal of Stem Cells》 SCIE 2024年第2期176-190,共15页
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown... BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship. 展开更多
关键词 Osteochondral defect repair Mesenchymal stem cells Extracellular matrix DECELLULARIZATION Antler stem cells Reserve mesenchymal cells Xenogeneic
下载PDF
Visualizing extended defects at the atomic level in a Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire
9
作者 Kejun Hu Shuai Wang +3 位作者 Boyu Li Ying Liu Binghui Ge Dongsheng Song 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期43-47,共5页
The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly charac... The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance. 展开更多
关键词 SUPERCONDUCTOR microstructure defect SCANNING transmission ELECTRON MICROSCOPY
下载PDF
Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells
10
作者 Qiurui Wang Jingwei Zhu +7 位作者 Yuanyuan Zhao Yijie Chang Nini Hao Zhe Xin Qiang Zhang Cong Chen Hao Huang Qunwei Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期283-291,共9页
The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of... The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC. 展开更多
关键词 buried interfaces charge recombination defect PASSIVATION inorganic perovskite solar cells strain relaxation
下载PDF
Defect mediated losses and degradation of perovskite solar cells:Origin impacts and reliable characterization techniques
11
作者 Himangshu Baishy Ramkrishna Das Adhikari +5 位作者 Mayur Jagdishbhai Patel Deepak Yadav Tapashi Sarmah Mizanur Alam Manab Kalita Parameswar Krishnan lyer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期217-253,共37页
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties... The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs. 展开更多
关键词 Perovskite solar cells defects lon migration DEGRADATION Stability
下载PDF
Built defects of homogeneous junction to enhance the lithium storage capacity of niobium pentoxide materials
12
作者 Huibin Ding Yang Luo +5 位作者 Zihan Song Cong Chen Kai Feng Xiaofei Yang Hongzhang Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期730-737,共8页
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit... Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles). 展开更多
关键词 Niobiumpent oxide Homojunction polycrystalline defectS Oxygen vacancy
下载PDF
Revealing the Role of Defect in 3D Graphene-Based Photocatalytic Composite for Efficient Elimination of Antibiotic and Heavy Metal Combined Pollution
13
作者 Xin Wang Jingzhe Zhang +3 位作者 Hui Wang Mengjun Liang Qiang Wang Fuming Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期164-174,共11页
Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and t... Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering. 展开更多
关键词 3D graphene Cu defect photocatalytic composite TETRACYCLINE
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting
14
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Intrinsic pentagon defect engineering in multiple spatial-scale carbon frameworks for efficient triiodide reduction
15
作者 Siyi Hou Xuedan Song +6 位作者 Chang Yu Jiangwei Chang Yiwang Ding Yingbin Liu Xiubo Zhang Weizhe Liu Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期20-28,I0002,共10页
Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topologi... Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topological defects in carbon frameworks to reveal the relationship between reactivity and defect structure remains a challenging task.Herein,the intrinsic pentagon carbon sites that can favor electron overflow and enhance their binding affinity towards the intermediates of catalytic reaction are firstly presented by the work function and the p-band center calculations.To experimentally verify this,the cage-opening reaction of fullerene is proposed and utilized for synthesizing carbon quantum dots with specific pentagon configuration(CQDs-P),subsequently utilizing CQDs-P to modulate the micro-scale defect density of three-dimensional reduced graphene oxide(rGO)viaπ-πinteractions.The multiple spatial-scale rGO-conjugated CQDs-P structure simultaneously possesses abundant pentagon and edge defects as catalytic active sites and long-range-orderedπelectron delocalization system as conductive network.The defects-rich CQDs-P/rGO-4 all-carbon-based catalyst exhibits superb catalytic activity for triiodide reduction reaction with a high photoelectric conversion efficiency of 8.40%,superior to the Pt reference(7.97%).Theoretical calculations suggest that pentagon defects in the carbon frameworks can promote charge transfer and modulate the adsorption/dissociation behavior of the reaction intermediates,thus enhancing the electrocatalytic activity of the catalyst.This work confirms the role of intrinsic pentagon defects in catalytic reactions and provides a new insight into the synthesis of defects-rich carbon catalysts. 展开更多
关键词 defect engineering Pentagon carbon Carbon quantum dots Electrocatalytic activity Triiodide reduction
下载PDF
Micro defects formation and dynamic response analysis of steel plate of quasi-cracking area subjected to explosive load
16
作者 Zheng-qing Zhou Ze-chen Du +5 位作者 Xiao Wang Hui-ling Jiang Qiang Zhou Yu-long Zhang Yu-zhe Liu Pei-ze Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期580-593,共14页
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin... As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center. 展开更多
关键词 Explosive load Quasi-cracking area Micro defects Steel plate Dynamic response Numerical simulation
下载PDF
Effect of Vacancy Defects on the Properties of CoS_(2) and FeS_(2)
17
作者 冯中营 ZHANG Jianmin +3 位作者 WANG Xiaowei YANG Wenjin JING Yinlan YANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期627-638,共12页
In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculat... In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices. 展开更多
关键词 cobalt disulfide iron disulfide vacancy defect fist principles
下载PDF
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
18
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
Tailoring NH_(4)^(+)storage by regulating oxygen defect in ammonium vanadate
19
作者 Yanyan Liu Ziyi Feng +3 位作者 Hanmei Jiang Xueying Dong Changgong Meng Yifu Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1171-1182,共12页
Defect engineering is an effective strategy for modifying the energy storage materials to improve their electrochemical performance.However,the impact of oxygen defect and its content on the electrochemical performanc... Defect engineering is an effective strategy for modifying the energy storage materials to improve their electrochemical performance.However,the impact of oxygen defect and its content on the electrochemical performances in the burgeoning aqueous NH_(4)^(+)storage field remains explored.Therefore,for the first time in this work,an oxygen-defective ammonium vanadate[(NH_(4))_(2)V_(10)O_(25)·8H_(2)O,denoted as Od-NHVO]with a novel 3D porous flower-like architecture was achieved via the reduction of thiourea in a mild reaction condition,which is a facile method that can realize the intention to regulate the oxygen defect content,with the capability of mass-production.The as-prepared Od_M-NHVO with moderate oxygen defect content can deliver a stable specific capacitance output(505 F g^(-1),252 mAh g^(-1)at 0.5 A g^(-1)with~80% capacitance retention after 10,000 cycles),which benefits from extra active sites,unimpeded NH_(4)^(+)-migration path and relatively high structure integrity.In contrast,low oxygen defect content will lead to the torpid electrochemical reaction kinetics while too high content of it will reduce the chargestorage capability and induce structural disintegration.The superior NH_(4)^(+)-storage behavior is achieved with the reversible intercalation/deintercalation process of NH_(4)^(+)accompanied by forming/breaking of hydrogen bond.As expected,the assembled flexible OdM-NHVO//PTCDI quasi-solid-state hybrid supercapacitor(FQSS HSC)also exhibits high areal capacitance,energy density and reliable flexibility.This work provides a new avenue for developing materials with oxygen-deficient structure for application in various aqueous non-metal cation storage systems. 展开更多
关键词 Ammonium vanadate Oxygen defect Ammonium-ion storage Hybrid supercapacitors Electrochemical performance
下载PDF
Crystallinity-defect matching relationship of g-C_(3)N_(4): Experimental and theoretical perspectives
20
作者 Yuhan Li Ziteng Ren +5 位作者 Zhengjiang He Ping Ouyang Youyu Duan Wendong Zhang Kangle Lv Fan Dong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期623-658,共36页
Good crystallinity can reduce the charge recombination centers caused by defects,whilst structures with strong polycondensation have high charge mobility,leading to more charge transfer to the material surface for rea... Good crystallinity can reduce the charge recombination centers caused by defects,whilst structures with strong polycondensation have high charge mobility,leading to more charge transfer to the material surface for reaction.Much effort has been put into the preparation of a highly efficient g-C_(3)N_(4) with defects to improve its application potential under the premise in high crystallinity.Hence,this review paper emphasizes the importance to balance the defect and crystallinity of g-C_(3)N_(4).In addition,detailed discussion on the relationship between defects and activity of g-C_(3)N_(4) was carried out based on its applications in environmental purification(e.g.,VOCs oxidation,NO_(x) oxidation,H_(2)O_(2) evolution,sterilization,pesticide oxidation)and energy conversion(H_(2) evolution,N_(2) fixation and CO_(2) reduction).Lastly,the challenge in developing more efficient defective g-C_(3)N_(4) photocatalytic materials is summarized. 展开更多
关键词 PHOTOCATALYSIS defect G-C_(3)N_(4) CRYSTALLINITY APPLICATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部