In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the...In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.展开更多
A method of accurately measuring the defect density of a high-power light-emitting diode (LED) is proposed. The method is based on measuring the number of emitting photons in the magnitude of 105 under the injection...A method of accurately measuring the defect density of a high-power light-emitting diode (LED) is proposed. The method is based on measuring the number of emitting photons in the magnitude of 105 under the injection current as weak as nA and calculating the non-radiative recombination coefficient which is related to defect density. Defect density is obtained with the self-developed measurement system, and it is demonstrated that defect density has an important influence on LED optical properties like luminous flux and internal quantum efficiency (IQE). At the same time, a batch of GaN-based LEDs with the chip size of 1 minx 1 mm are selected to conduct the accelerated aging tests lasting for 1000 hours. The results show that defect density exhibits a greater variation and is more sensitive to LED reliability than luminous flux during aging tests. Based on these results, it is concluded that for the GaN-based LED with a chip size of 1 mm ~ I mm, if its defect density is over 1017/cm3, the LED device performance suffers a serious deterioration, and finally fails.展开更多
: The effect of hydrogen plasma treatment (HPT) during the initial stage ofmicrocrystalline silicon (μc- Si) growth on the defect density of μc-Si has been investigated. Lower absorption coefficient in the 0.8-...: The effect of hydrogen plasma treatment (HPT) during the initial stage ofmicrocrystalline silicon (μc- Si) growth on the defect density of μc-Si has been investigated. Lower absorption coefficient in the 0.8-1.0 eV indicated less defect density compared to its counterpart without HPT. The infrared spectroscopy of μc-Si with HPT shows an increase in 2040 cm-1, which reveals more Si-H in the amorphous/crystalline interfaces. We ascribe the decrease of defect density to hydrogen passivation of the dangling bonds. Improved performance of μc-Si solar cell with HPT is due to the reduced defect density.展开更多
Understanding the defect characteristics that occur near the space-charge regions(SCRs)of kesterite(CZTSSe)solar cells is important because the recombination loss at the CZTSSe/CdS interface is considered the main cau...Understanding the defect characteristics that occur near the space-charge regions(SCRs)of kesterite(CZTSSe)solar cells is important because the recombination loss at the CZTSSe/CdS interface is considered the main cause of their low efficiency.CZTSSe surfaces with different elemental compositions were formed without polishing(C00)and with polishing for 20 s(C20)and 60 s(C60).For C60,a specific region near the SCR was excessively Cu-rich and Zn-poor compared to C00 and C20.Various charged defects formed where the elemental variation was large.As the main deep acceptor defect energy level(E_(a2))near the SCR increased,the efficiency,open-circuit voltage deficit,and current density degraded,and this phenomenon was especially rapid for large E_(a2) values.As the E_(a2) near the SCR became deep,the carrier diffusion length decreased more for the CZTSSe solar cells with a low carrier mobility than for the CuInGaSe_(2)(CIGSe)solar cells.The large amplitude of the electrostatic potential fluctuation in the CZTSSe solar cells induced a high carrier recombination and a short carrier lifetime.Consequently,the properties of the CZTSSe solar cells were more strongly degraded by defects with deep energy levels near the SCR than those of the CIGSe solar cells.展开更多
The effect of defect density on the modulation of incident laser waves is investigated. First, based on the actual defect distribution in the subsurface of fused silica, a three-dimensional (3D) grid model of defect...The effect of defect density on the modulation of incident laser waves is investigated. First, based on the actual defect distribution in the subsurface of fused silica, a three-dimensional (3D) grid model of defect sites is constructed. The 3D finite-difference time-domain method is developed to solve the Maxwell equations. Then the electrical field intensity in the vicinity of the defect sites in the subsurface of fused silica is numerically calculated. The relationships between the maximal electrical field intensity in fused silica and the geometry of the defect sites are given. The simulated results reveal that the modulation becomes more remarkable with an increase of the defect density. In addition, the effect of the distribution mode of defects on modulation is discussed. Meanwhile, the underlying physical mechanism is analyzed in detail.展开更多
Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlo...Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.展开更多
Perovskite BaTaO_(2) N(BTON) is one of the most promising photocatalysts for solar water splitting due to its wide visible-light absorption and suitable conduction/valence bands,but it still confronts the challenge of...Perovskite BaTaO_(2) N(BTON) is one of the most promising photocatalysts for solar water splitting due to its wide visible-light absorption and suitable conduction/valence bands,but it still confronts the challenge of high defect density causing decreased charge separation as well as photocatalytic activity.In this work,we develop a simple zinc doping strategy to greatly suppress its defect density and promote its water reduction performance.It is found that the defect formation on the nitrided Ba(Zn_(1/3-x)Ta_(2/3))O_(3-y)N_z(denoted as BZTON hereafter) will be greatly inhibited when the Zn-doped Ba(Zn_(1/3)Ta_(2/3))O_(3)(BZTO) oxide is used as the nitridation precursor.The structural characterizations and discussion demonstrate that the effective inhibition of Ta^(5+)into Ta^(4+)defects in BZTON mainly results from the easy reduction of zinc ions into metal and further the evaporation of zinc metal under the thermal ammonia flow.Interestingly,this simply doping methodology can be easily extended into the synthesis of SrTaO_(2) N(STON) with extremely low defect density,demonstrating its generality.Benefiting from the successful control to the defect density,the as-obtained BZTON photocatalyst exhibits remarkably promoted charge separation as well as water reduction activity to produce hydrogen with respect to the pristine BTON.Our work may provide an alternative avenue to prepare oxynitride semiconductors with reduced defect density for promoted solar energy conversion.展开更多
Optimizing the interfacial properties between perovskite and carbon electrodes has always been an important way to improve the photoelectric conversion efficiency(PCE)of carbon-based perovskite solar cells(C-PSCs)and ...Optimizing the interfacial properties between perovskite and carbon electrodes has always been an important way to improve the photoelectric conversion efficiency(PCE)of carbon-based perovskite solar cells(C-PSCs)and facilitate their commercialization.In this paper,nitrogen-doped graphene quantum dots(N-GQDs)with fluorescent properties were successfully prepared using inexpensive coal as raw material by a facile and environmentally friendly chemical reagent oxidation.The results show that the electron-rich pyridinic nitrogen in N-GQDs can act as Lewis bases to form coordination bonds with uncoordinated lead ions by sharing electron pairs,thereby reducing the defect density and nonradiative recombination of photo-generated electron-hole,and extending lifetime of charge carriers.In addition,due to the passivation of N-GQDs,the hysteresis effect of the device is significantly reduced and the long-term stability is also improved.By optimizing the concentration,the PCE of C-PSCs achieved a maximum of 14.31%,which was improved by 20.25%compared with 11.90%of the pristine C-PSCs.This work provides a facile,environmentally friendly and efficient strategy for improving the overall performance of C-PSCs using inexpensive coal-based N-GQDs.展开更多
Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transpor...Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transport material(HTM)-free PSC based on methyl ammonium tin triiodide(CH_(3) NH_(3) SnI_(3))was performed using a one-dimensional solar cell capacitance simulator(SCAPS-1D)software.The eff ect of perovskite thickness,interface defect density,temperature,and electron transport material(ETM)on the photovoltaic performance of the device was explored.Prior to optimization,the device demonstrated a power conversion effi ciency(PCE)of 8.35%,fi ll factor(FF)of 51.93%,short-circuit current density(J_(sc))of 26.36 mA/cm 2,and open circuit voltage(V_(oc))of 0.610 V.Changing the above parameters individually while keeping others constant,the obtained optimal absorber thickness was 1.0μm,the interface defect density was 1010 cm-2,the temperature was 290 K,and the TiO 2 thickness was 0.01μm.On simulating with the optimized data,the fi nal device gave a PCE of 11.03%,FF of 50.78%,J_(sc) of 29.93 mA/cm 2,and V_(oc) of 0.726 V.Comparing the optimized and unoptimized metric parameters,an improvement of~32.10%in PCE,~13.41%in J_(sc),and~19.02%in V_(oc) were obtained.Therefore,the results of this study are encouraging and can pave the path for developing highly effi cient PSCs that are cost-eff ective,eco-friendly,and comparable to state-of-the-art.展开更多
The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole tr...The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu<sub>2</sub>O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS<sub>2</sub> solar cell without HTL, while the proposed solar cell (SC) utilizing Cu<sub>2</sub>O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS<sub>2</sub> hetero-junction TFSC.展开更多
Copper Zinc Tin Sulfide (CZTS) solar cell (SC) has garnered significant attention from researchers in recent years owing to its affordability, less toxic earth abundant constituents, remarkable conversion efficiency a...Copper Zinc Tin Sulfide (CZTS) solar cell (SC) has garnered significant attention from researchers in recent years owing to its affordability, less toxic earth abundant constituents, remarkable conversion efficiency and promising prospects for the bulk manufacture of thin film solar cells. Moreover, CZTS exhibits a high absorption coefficient and possesses an optimal adjustable direct band gap, making it a promising candidate for various photovoltaic applications. Hence, in this study, a new configuration (CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/ Al: ZnO) is introduced for CZTS SC, which was simulated using SCAPS-1D. The utilization of CuSbS<sub>2</sub> as the back surface field (BSF) and CdS as the buffer layer was investigated to enhance the performance of CZTS SC. Moreover, a comparative numerical analysis was carried out to contrast the SC configurations of CZTS/CdS/i-ZnO/Al: ZnO and CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/Al: ZnO. In this study, the impact on SC parameters such as open circuit voltage (V<sub>oc</sub>), short- circuit current density (J<sub>sc</sub>), Fill-factor (FF), and Power Conversion Efficiency (PCE) by varying thickness, doping density, defect density of absorber and buffer layer, thickness and doping density of BSF, and operating temperature have been thoroughly investigated. The optimum structure consists of i-ZnO and Al: ZnO for the window layer, CdS for the buffer layer, CZTS for the absorber layer, and BSF layers with thicknesses of 50 nm, 200 nm, 50 nm, 2000 nm, and 50 nm, respectively. The designed SC with a BSF layer had a PCE of 28.76%, J<sub>SC</sub> of 32.53 mA/cm<sup>2</sup>, V<sub>oc</sub> of 1.01233 V, and FF of 87.35%. The structure without a BSF layer has a PCE of 24.21%, V<sub>oc</sub> of 0.898 V, J<sub>SC</sub> of 31.56 mA/cm<sup>2</sup>, and FF of 85.32%. Furthermore, an analysis of temperature, quantum efficiency (QE), C- V characteristics and the J-V curve was conducted, revealing the potential of CuSbS<sub>2</sub> as a BSF and CdS as a buffer layer in high-performance, cost-effective CZTS SC designs.展开更多
By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The...By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.展开更多
The paper presents a one-dimensional simulation study of chalcopyrite Cu(In,Ga)Se2(CIGS)solar cells,where the effects of the variation of CIGS,CdS,and ZnO layers are presented.Additionlly the influence of the variatio...The paper presents a one-dimensional simulation study of chalcopyrite Cu(In,Ga)Se2(CIGS)solar cells,where the effects of the variation of CIGS,CdS,and ZnO layers are presented.Additionlly the influence of the variation of doping and the defects density of shallow uniform donors and acceptors types are also presented.The analyse of the simulation results shows that recombination inside the space charge region(SCR)decrease more our CIGS solar cell model performance.We also found that the electrical parameters increase with increasing CIGS absorber doping density exception of JSC values that reach their maximum at 1016cm-3 and decrease due to recombination of charge carriers in the p-n junction particularly the recombination inside the SCR.We also stressed the fact that the effects of shallow uniforme donor density is very low on the performance of our CIGS solar cell model is important because it will allow to control the width of space charge region from shallow uniform acceptors defect density that has a strong influence on the different electrical parameters.Yet,good optimization of performance of the CIGS-based solar cell necessarily passes though a good control of the space charge region width and will constitute a boosting perspective for the preparation of our next paper.We contact that the results obtained of the numerical simulation with SCAPS-1D show a good agreement comparatively of the literature results.The simulation of our CIGS solar cell presents best performances if the values of the absorber layer thickness is in the range of 0.02 to 0.03μm,the buffer layer thickness is in the range of 0.02 to 0.06μm and the defects density of shallow uniform acceptors types is in the range of 1015 to 1017cm-3.展开更多
In this work, we have modeled and simulated the electrical performance of CIGS thin-film solar cell using one-dimensional simulation software (SCAPS-1D). Starting from a baseline model that reproduced the experimental...In this work, we have modeled and simulated the electrical performance of CIGS thin-film solar cell using one-dimensional simulation software (SCAPS-1D). Starting from a baseline model that reproduced the experimental results, the properties of the absorber layer and the CIGS/Mo interface have been explored, and the requirements for high-efficiency CIGS solar cell were proposed. Simulation results show that the band-gap, acceptor density, defect density are crucial parameters that affect the performance of the solar cell. The best conversion efficiency is obtained when the absorber band-gap is around 1.2 eV, the acceptor density at 10<sup>16</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> and the defect density less than 10<sup>14</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. In addition, CIGS/Mo interface has been investigated. It appears that a thin MoSe<sub>2</sub> layer reduces recombination at this interface. An improvement of 1.5 to 2.5 mA/cm<sup>2</sup> in the current density (<em>J<sub>sc</sub></em>) depending on the absorber thickness is obtained.展开更多
Defect curvature was developed based on our previously proposed direction curvature theory. Defect curvature, as a universal criterion, was used to identify vacancy formation energies E_f of mono-vacancies to octa-vac...Defect curvature was developed based on our previously proposed direction curvature theory. Defect curvature, as a universal criterion, was used to identify vacancy formation energies E_f of mono-vacancies to octa-vacancies in a(5,5) tube. An ab initio calculation results showed that E_f decreased with increasing the defect curvature K_(V_s)(s = 1~8). The structures with removed carbon atoms along zigzag chain or the tubular axis were the most stable in each kind of Vs, because their corresponding K_(V_s) was the largest. In addition, local product structures disturbed the variation rule of E_f as K_(V_s). There was an odd-even oscillation rule in the smallest E_f among each kind of Vs as the s value and vacancies V2, V4 and V6 were more stable. The stabilities of the related vacancy structures were confirmed by two dissociation processes.展开更多
The application of titanium dioxide(TiO_(2))in the photovoltaic(PV)field is gaining traction as this material can be deployed in doping-free heterojunction solar cells with the role of electron selective contact.For m...The application of titanium dioxide(TiO_(2))in the photovoltaic(PV)field is gaining traction as this material can be deployed in doping-free heterojunction solar cells with the role of electron selective contact.For modeling-based optimization of such contact,knowledge of the titanium oxide defect density of states(DOS)is crucial.In this paper,we report a method to extract the defect density through nondestructive optical measures,including the contribution given by small polaron optical transitions.The presence of both related to oxygen-vacancy defects and polarons is supported by the results of optical characterizations and the evaluation of previous observations resulting in a defect band fixed at 1 eV below the conduction band edge of the oxide.Solar cells employing pulsed laser deposited-TiO_(2)electron selective contacts were fabricated and characterized.The J-V curve of these cells showed,however,an S-shape,then a detailed analysis of the reasons for such behavior was carried out.We use a model involving the series of a standard cell equivalent circuit with a Schottky junction in order to explain these atypical performances.A good matching between the experimental measurements and the adopted theoretical model was obtained.The extracted parameters are listed and analyzed to shed light on the reasons behind the low-performance cells.展开更多
Two-dimensional(2D)semiconductors have attracted great attention to extend Moore’s law,which motivates the quest for fast growth of high-quality materials.However,taking MoS_(2) as an example,current methods yield 2D...Two-dimensional(2D)semiconductors have attracted great attention to extend Moore’s law,which motivates the quest for fast growth of high-quality materials.However,taking MoS_(2) as an example,current methods yield 2D MoS_(2) with a low growth rate and poor quality with vacancy concentrations three to five orders of magnitude higher than silicon and other commercial semiconductors.Here,we develop a strategy of using an intermediate product of iodine as a transport agent to carry metal precursors efficiently for ultrafast growth of high-quality MoS_(2).The grown MoS_(2) has the lowest density of sulfur vacancies(~1.41×10^(12) cm^(−2))reported so far and excellent electrical properties with high on/off current ratios of 108 and carrier mobility of 175 cm^(2) V^(−1) s^(−1).Theoretical calculations show that by incorporating iodine,the nucleation barrier of MoS_(2) growth with sulfur-terminated edges reduces dramatically.The sufficient supply of precursor and low nucleation energy together boost the ultrafast growth of sub-millimeter MoS_(2) domains within seconds.This work provides an effective method for the ultrafast growth of 2D semiconductors with high quality,which will promote their applications.展开更多
In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of c...In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of cryogenic thermal cycles (CTC), thermal stability remains almost unchanged, while the plasticity is increased, indicating that the cryogenic thermal cyclic treatment is an effective way to improve plasticity of metallic glasses without distinctly deteriorating thermal stability. Our analysis suggests that the increase in the defect density resulted from the cryogenic thermal treatments are responsible for the plasticity increment. Variation of yield strength can be well interpreted from microstructural percolation which affected by both density and characteristic volume of the defect sites.展开更多
Graphene oxide(GO),a new and promising material,has been widely used as a co-catalyst in photocatalytic reactions;however,its capacity as a sole photocatalyst has rarely been investigated.In this study,ultraviolet(UV)...Graphene oxide(GO),a new and promising material,has been widely used as a co-catalyst in photocatalytic reactions;however,its capacity as a sole photocatalyst has rarely been investigated.In this study,ultraviolet(UV) light irradiation was used as a modification method to obtain reduced GO(rGO) samples.The samples were used as photocatalysts to examine their visible light photocatalytic activity toward hexavalent chromium(Cr(Ⅵ)) removal.Atomic force microscopy(AFM),X-ray diffraction(XRD),UV-vis spectrophotometry,Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),and electron spin resonance(ESR) spectroscopy were applied to interpret the surface and structure changes with UV irradiation.The oxygen-containing functional groups(OFGs) on the GO surface were reduced to defective carbons andπ-conjugated C=C(sp^(2) domains) under UV light;this led to a decrease in the interlayer distance between GO sheets,GO fragmentation,and increased disorder on the GO surface.The restoration of sp^(2) domains led to a narrower band gap of GO,which favored the rGO excitation by visible light to generate electron-hole pairs.The rGO pre-irradiated with UV for 1 h(rGO-1),possessing the highest defect density and electron generation efficiency,exhibited the best Cr(Ⅵ) reduction efficiency,which was about three times that of the GO sample;moreover,it outperformed most of the reported GO-based nanomaterials.In addition,low pH and the addition of citric acid as a hole scavenger could further improve the photocatalytic activity.This study proves that GO or rGO can be used as a sole photocatalyst under visible light to remove environmental pollutants such as heavy-metal ions,and it paves the way for the development of this kind of material and its UV-irradiation modification for further applications.展开更多
Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based...Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most de- fects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed.展开更多
文摘In this manuscript, we used the SCAPS-1D software to perform numerical simulations on a perovskite solar cell. These simulations were used to study the influence of certain parameters on the electrical behavior of the cell. We have shown in this study that electron mobility is strongly influenced by the thickness of the absorber, since electron velocity is reduced by thickness. The influence of the defect density shows that above 10<sup>16</sup> cm<sup>-3</sup> all the electrical parameters are affected by the defects. The band discontinuity at the interface generally plays a crucial role in the charge transport phenomenon. The importance of this study is to enable the development of good quality perovskite solar cells, while taking into account the parameters that limit solar cell performance.
基金Project supported by the Upgrading Project of Shenzhen Key Laboratory of Information Science and Technology,China (Grant No.CXB20l00525038A)the Shenzhen Science and Technology Development Plan,China (Grant No.2009003)the Science and Technology Program of Nanshan District,Shenzhen,China (Grant No.2011015)
文摘A method of accurately measuring the defect density of a high-power light-emitting diode (LED) is proposed. The method is based on measuring the number of emitting photons in the magnitude of 105 under the injection current as weak as nA and calculating the non-radiative recombination coefficient which is related to defect density. Defect density is obtained with the self-developed measurement system, and it is demonstrated that defect density has an important influence on LED optical properties like luminous flux and internal quantum efficiency (IQE). At the same time, a batch of GaN-based LEDs with the chip size of 1 minx 1 mm are selected to conduct the accelerated aging tests lasting for 1000 hours. The results show that defect density exhibits a greater variation and is more sensitive to LED reliability than luminous flux during aging tests. Based on these results, it is concluded that for the GaN-based LED with a chip size of 1 mm ~ I mm, if its defect density is over 1017/cm3, the LED device performance suffers a serious deterioration, and finally fails.
基金supported by the National High Technology Research and Development Program of China(No.2011AA050504)the National Natural Science Foundation of China(No.51072194)the Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(No.12JG01)
文摘: The effect of hydrogen plasma treatment (HPT) during the initial stage ofmicrocrystalline silicon (μc- Si) growth on the defect density of μc-Si has been investigated. Lower absorption coefficient in the 0.8-1.0 eV indicated less defect density compared to its counterpart without HPT. The infrared spectroscopy of μc-Si with HPT shows an increase in 2040 cm-1, which reveals more Si-H in the amorphous/crystalline interfaces. We ascribe the decrease of defect density to hydrogen passivation of the dangling bonds. Improved performance of μc-Si solar cell with HPT is due to the reduced defect density.
基金the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(No.2022M3J1A1085371)the DGIST R&D programs of the Ministry of Science and ICT(23-ET-08 and 23-CoE-ET-01)the National Research Foundation of Korea(NRF),funded by the Korean Government(NRF-2021R1A2C1008598).
文摘Understanding the defect characteristics that occur near the space-charge regions(SCRs)of kesterite(CZTSSe)solar cells is important because the recombination loss at the CZTSSe/CdS interface is considered the main cause of their low efficiency.CZTSSe surfaces with different elemental compositions were formed without polishing(C00)and with polishing for 20 s(C20)and 60 s(C60).For C60,a specific region near the SCR was excessively Cu-rich and Zn-poor compared to C00 and C20.Various charged defects formed where the elemental variation was large.As the main deep acceptor defect energy level(E_(a2))near the SCR increased,the efficiency,open-circuit voltage deficit,and current density degraded,and this phenomenon was especially rapid for large E_(a2) values.As the E_(a2) near the SCR became deep,the carrier diffusion length decreased more for the CZTSSe solar cells with a low carrier mobility than for the CuInGaSe_(2)(CIGSe)solar cells.The large amplitude of the electrostatic potential fluctuation in the CZTSSe solar cells induced a high carrier recombination and a short carrier lifetime.Consequently,the properties of the CZTSSe solar cells were more strongly degraded by defects with deep energy levels near the SCR than those of the CIGSe solar cells.
基金Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J045)the National Natural Science Fundation of China and the China Academy of Engineering Physics United Foundation (NSFA) (Grant No. 11076008)
文摘The effect of defect density on the modulation of incident laser waves is investigated. First, based on the actual defect distribution in the subsurface of fused silica, a three-dimensional (3D) grid model of defect sites is constructed. The 3D finite-difference time-domain method is developed to solve the Maxwell equations. Then the electrical field intensity in the vicinity of the defect sites in the subsurface of fused silica is numerically calculated. The relationships between the maximal electrical field intensity in fused silica and the geometry of the defect sites are given. The simulated results reveal that the modulation becomes more remarkable with an increase of the defect density. In addition, the effect of the distribution mode of defects on modulation is discussed. Meanwhile, the underlying physical mechanism is analyzed in detail.
基金Supported by the Key Project of Education Department of China under Grant No 211035the Science Foundation from Education Department of Liaoning Province under Grant No L2014445
文摘Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current.
基金supported by the National Natural Science Foundation of China (21633009, 21925206)the National Key R&D Program of China (2020YFA0406102)+2 种基金the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund,Chinese Academy of Sciences (DNL 201913)the International Partnership Program of Chinese Academy of Sciences (121421KYSB20190025)the DICP foundation of innovative research (DICP I201927)。
文摘Perovskite BaTaO_(2) N(BTON) is one of the most promising photocatalysts for solar water splitting due to its wide visible-light absorption and suitable conduction/valence bands,but it still confronts the challenge of high defect density causing decreased charge separation as well as photocatalytic activity.In this work,we develop a simple zinc doping strategy to greatly suppress its defect density and promote its water reduction performance.It is found that the defect formation on the nitrided Ba(Zn_(1/3-x)Ta_(2/3))O_(3-y)N_z(denoted as BZTON hereafter) will be greatly inhibited when the Zn-doped Ba(Zn_(1/3)Ta_(2/3))O_(3)(BZTO) oxide is used as the nitridation precursor.The structural characterizations and discussion demonstrate that the effective inhibition of Ta^(5+)into Ta^(4+)defects in BZTON mainly results from the easy reduction of zinc ions into metal and further the evaporation of zinc metal under the thermal ammonia flow.Interestingly,this simply doping methodology can be easily extended into the synthesis of SrTaO_(2) N(STON) with extremely low defect density,demonstrating its generality.Benefiting from the successful control to the defect density,the as-obtained BZTON photocatalyst exhibits remarkably promoted charge separation as well as water reduction activity to produce hydrogen with respect to the pristine BTON.Our work may provide an alternative avenue to prepare oxynitride semiconductors with reduced defect density for promoted solar energy conversion.
基金financially supported by the National Natural Science Foundation of China(52162035)the Open project of State Key Laboratory of Fine Chemicals,the Dalian University of Technology(KF2004)the Graduate Research Innovation Project of Xinjiang Uyghur Autonomous Region(XJ2022G045)。
文摘Optimizing the interfacial properties between perovskite and carbon electrodes has always been an important way to improve the photoelectric conversion efficiency(PCE)of carbon-based perovskite solar cells(C-PSCs)and facilitate their commercialization.In this paper,nitrogen-doped graphene quantum dots(N-GQDs)with fluorescent properties were successfully prepared using inexpensive coal as raw material by a facile and environmentally friendly chemical reagent oxidation.The results show that the electron-rich pyridinic nitrogen in N-GQDs can act as Lewis bases to form coordination bonds with uncoordinated lead ions by sharing electron pairs,thereby reducing the defect density and nonradiative recombination of photo-generated electron-hole,and extending lifetime of charge carriers.In addition,due to the passivation of N-GQDs,the hysteresis effect of the device is significantly reduced and the long-term stability is also improved.By optimizing the concentration,the PCE of C-PSCs achieved a maximum of 14.31%,which was improved by 20.25%compared with 11.90%of the pristine C-PSCs.This work provides a facile,environmentally friendly and efficient strategy for improving the overall performance of C-PSCs using inexpensive coal-based N-GQDs.
文摘Tin(Sn)-based perovskite solar cells(PSCs)have received increasing attention in the domain of photovoltaics due to their environmentally friendly nature.In this paper,numerical modeling and simulation of hole transport material(HTM)-free PSC based on methyl ammonium tin triiodide(CH_(3) NH_(3) SnI_(3))was performed using a one-dimensional solar cell capacitance simulator(SCAPS-1D)software.The eff ect of perovskite thickness,interface defect density,temperature,and electron transport material(ETM)on the photovoltaic performance of the device was explored.Prior to optimization,the device demonstrated a power conversion effi ciency(PCE)of 8.35%,fi ll factor(FF)of 51.93%,short-circuit current density(J_(sc))of 26.36 mA/cm 2,and open circuit voltage(V_(oc))of 0.610 V.Changing the above parameters individually while keeping others constant,the obtained optimal absorber thickness was 1.0μm,the interface defect density was 1010 cm-2,the temperature was 290 K,and the TiO 2 thickness was 0.01μm.On simulating with the optimized data,the fi nal device gave a PCE of 11.03%,FF of 50.78%,J_(sc) of 29.93 mA/cm 2,and V_(oc) of 0.726 V.Comparing the optimized and unoptimized metric parameters,an improvement of~32.10%in PCE,~13.41%in J_(sc),and~19.02%in V_(oc) were obtained.Therefore,the results of this study are encouraging and can pave the path for developing highly effi cient PSCs that are cost-eff ective,eco-friendly,and comparable to state-of-the-art.
文摘The paper reported the design and thorough analysis of a thin-film solar cell (TFSC) based on molybdenum disulfide (MoS<sub>2</sub>) with an integrated Copper(I) Oxide (Cu<sub>2</sub>O) hole transport layer (HTL), employing the one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. By varying crucial parameters such as absorber layer thickness, doping density, and bulk defect density, as well as HTL thickness, doping concentration, and electron affinity, defect density at ZnO/absorber and absorber/Cu<sub>2</sub>O interfaces, and operating temperature, we explored key photovoltaic measures including open circuit voltage (Voc), short-circuit current density (Jsc), fill-factor (FF), and power conversion efficiency (PCE) of the hetero-junction solar cell. The study demonstrated an efficiency of 18.87% for the MoS<sub>2</sub> solar cell without HTL, while the proposed solar cell (SC) utilizing Cu<sub>2</sub>O HTL and optimized device structure exhibited a remarkable PCE of 26.70%. The outcomes derived from the present study offer valuable insights for the progress of a highly efficient and economically viable MoS<sub>2</sub> hetero-junction TFSC.
文摘Copper Zinc Tin Sulfide (CZTS) solar cell (SC) has garnered significant attention from researchers in recent years owing to its affordability, less toxic earth abundant constituents, remarkable conversion efficiency and promising prospects for the bulk manufacture of thin film solar cells. Moreover, CZTS exhibits a high absorption coefficient and possesses an optimal adjustable direct band gap, making it a promising candidate for various photovoltaic applications. Hence, in this study, a new configuration (CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/ Al: ZnO) is introduced for CZTS SC, which was simulated using SCAPS-1D. The utilization of CuSbS<sub>2</sub> as the back surface field (BSF) and CdS as the buffer layer was investigated to enhance the performance of CZTS SC. Moreover, a comparative numerical analysis was carried out to contrast the SC configurations of CZTS/CdS/i-ZnO/Al: ZnO and CuSbS<sub>2</sub>/CZTS/CdS/i-ZnO/Al: ZnO. In this study, the impact on SC parameters such as open circuit voltage (V<sub>oc</sub>), short- circuit current density (J<sub>sc</sub>), Fill-factor (FF), and Power Conversion Efficiency (PCE) by varying thickness, doping density, defect density of absorber and buffer layer, thickness and doping density of BSF, and operating temperature have been thoroughly investigated. The optimum structure consists of i-ZnO and Al: ZnO for the window layer, CdS for the buffer layer, CZTS for the absorber layer, and BSF layers with thicknesses of 50 nm, 200 nm, 50 nm, 2000 nm, and 50 nm, respectively. The designed SC with a BSF layer had a PCE of 28.76%, J<sub>SC</sub> of 32.53 mA/cm<sup>2</sup>, V<sub>oc</sub> of 1.01233 V, and FF of 87.35%. The structure without a BSF layer has a PCE of 24.21%, V<sub>oc</sub> of 0.898 V, J<sub>SC</sub> of 31.56 mA/cm<sup>2</sup>, and FF of 85.32%. Furthermore, an analysis of temperature, quantum efficiency (QE), C- V characteristics and the J-V curve was conducted, revealing the potential of CuSbS<sub>2</sub> as a BSF and CdS as a buffer layer in high-performance, cost-effective CZTS SC designs.
文摘By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact (IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters (doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of 2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density.
文摘The paper presents a one-dimensional simulation study of chalcopyrite Cu(In,Ga)Se2(CIGS)solar cells,where the effects of the variation of CIGS,CdS,and ZnO layers are presented.Additionlly the influence of the variation of doping and the defects density of shallow uniform donors and acceptors types are also presented.The analyse of the simulation results shows that recombination inside the space charge region(SCR)decrease more our CIGS solar cell model performance.We also found that the electrical parameters increase with increasing CIGS absorber doping density exception of JSC values that reach their maximum at 1016cm-3 and decrease due to recombination of charge carriers in the p-n junction particularly the recombination inside the SCR.We also stressed the fact that the effects of shallow uniforme donor density is very low on the performance of our CIGS solar cell model is important because it will allow to control the width of space charge region from shallow uniform acceptors defect density that has a strong influence on the different electrical parameters.Yet,good optimization of performance of the CIGS-based solar cell necessarily passes though a good control of the space charge region width and will constitute a boosting perspective for the preparation of our next paper.We contact that the results obtained of the numerical simulation with SCAPS-1D show a good agreement comparatively of the literature results.The simulation of our CIGS solar cell presents best performances if the values of the absorber layer thickness is in the range of 0.02 to 0.03μm,the buffer layer thickness is in the range of 0.02 to 0.06μm and the defects density of shallow uniform acceptors types is in the range of 1015 to 1017cm-3.
文摘In this work, we have modeled and simulated the electrical performance of CIGS thin-film solar cell using one-dimensional simulation software (SCAPS-1D). Starting from a baseline model that reproduced the experimental results, the properties of the absorber layer and the CIGS/Mo interface have been explored, and the requirements for high-efficiency CIGS solar cell were proposed. Simulation results show that the band-gap, acceptor density, defect density are crucial parameters that affect the performance of the solar cell. The best conversion efficiency is obtained when the absorber band-gap is around 1.2 eV, the acceptor density at 10<sup>16</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> and the defect density less than 10<sup>14</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. In addition, CIGS/Mo interface has been investigated. It appears that a thin MoSe<sub>2</sub> layer reduces recombination at this interface. An improvement of 1.5 to 2.5 mA/cm<sup>2</sup> in the current density (<em>J<sub>sc</sub></em>) depending on the absorber thickness is obtained.
基金Supported by Talent Incubation Funding of School of Materials and Metallurgy(2014CY012)Produce-Learn-Research project of Inner Mongolia University of Science&Technology(PY-201502)
文摘Defect curvature was developed based on our previously proposed direction curvature theory. Defect curvature, as a universal criterion, was used to identify vacancy formation energies E_f of mono-vacancies to octa-vacancies in a(5,5) tube. An ab initio calculation results showed that E_f decreased with increasing the defect curvature K_(V_s)(s = 1~8). The structures with removed carbon atoms along zigzag chain or the tubular axis were the most stable in each kind of Vs, because their corresponding K_(V_s) was the largest. In addition, local product structures disturbed the variation rule of E_f as K_(V_s). There was an odd-even oscillation rule in the smallest E_f among each kind of Vs as the s value and vacancies V2, V4 and V6 were more stable. The stabilities of the related vacancy structures were confirmed by two dissociation processes.
文摘The application of titanium dioxide(TiO_(2))in the photovoltaic(PV)field is gaining traction as this material can be deployed in doping-free heterojunction solar cells with the role of electron selective contact.For modeling-based optimization of such contact,knowledge of the titanium oxide defect density of states(DOS)is crucial.In this paper,we report a method to extract the defect density through nondestructive optical measures,including the contribution given by small polaron optical transitions.The presence of both related to oxygen-vacancy defects and polarons is supported by the results of optical characterizations and the evaluation of previous observations resulting in a defect band fixed at 1 eV below the conduction band edge of the oxide.Solar cells employing pulsed laser deposited-TiO_(2)electron selective contacts were fabricated and characterized.The J-V curve of these cells showed,however,an S-shape,then a detailed analysis of the reasons for such behavior was carried out.We use a model involving the series of a standard cell equivalent circuit with a Schottky junction in order to explain these atypical performances.A good matching between the experimental measurements and the adopted theoretical model was obtained.The extracted parameters are listed and analyzed to shed light on the reasons behind the low-performance cells.
基金This work was supported by the National Key R&D Program(2018YFA0307300)the National Natural Science Foundation of China(51991343,51991340,52188101 and 51920105002)+3 种基金the China Postdoctoral Science Foundation(2021M701948)the National Science Fund for Distinguished Young Scholars(52125309)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)Shenzhen Basic Research Project(JCYJ20200109144616617 and JCYJ20220818101014029).
文摘Two-dimensional(2D)semiconductors have attracted great attention to extend Moore’s law,which motivates the quest for fast growth of high-quality materials.However,taking MoS_(2) as an example,current methods yield 2D MoS_(2) with a low growth rate and poor quality with vacancy concentrations three to five orders of magnitude higher than silicon and other commercial semiconductors.Here,we develop a strategy of using an intermediate product of iodine as a transport agent to carry metal precursors efficiently for ultrafast growth of high-quality MoS_(2).The grown MoS_(2) has the lowest density of sulfur vacancies(~1.41×10^(12) cm^(−2))reported so far and excellent electrical properties with high on/off current ratios of 108 and carrier mobility of 175 cm^(2) V^(−1) s^(−1).Theoretical calculations show that by incorporating iodine,the nucleation barrier of MoS_(2) growth with sulfur-terminated edges reduces dramatically.The sufficient supply of precursor and low nucleation energy together boost the ultrafast growth of sub-millimeter MoS_(2) domains within seconds.This work provides an effective method for the ultrafast growth of 2D semiconductors with high quality,which will promote their applications.
基金supported by the National Natural Science Foundation of China(51671018,11790293,51531001,51422101,51371003,and 51671021)111 Project(B07003)+3 种基金International S&T Cooperation Program of China(2015DFG52600)Program for Changjiang Scholars and Innovative Research Team in University of China(IRT_14R05)the Projects of SKLAMM-USTB(2016Z04,2016-09,2016Z-16)the financial support from the Top-Notch Young Talents Program and Fundamental Research Fund for the Central Universities(FRF-TP-15-004C1)
文摘In this paper, effects of cryogenic thermal cycling on deformation behavior and thermal stability of the Zr46Cu46AI8 bulk metallic glass (BMG) were studied. The results show that with the increase of the number of cryogenic thermal cycles (CTC), thermal stability remains almost unchanged, while the plasticity is increased, indicating that the cryogenic thermal cyclic treatment is an effective way to improve plasticity of metallic glasses without distinctly deteriorating thermal stability. Our analysis suggests that the increase in the defect density resulted from the cryogenic thermal treatments are responsible for the plasticity increment. Variation of yield strength can be well interpreted from microstructural percolation which affected by both density and characteristic volume of the defect sites.
基金financial support provided by National Natural Science Foundation of China (Nos.21876003 and41961134034)the Second Tibetan Plateau Scientific Expedition and Research (No.2019QZKK0607)the 111 Project Urban Air Pollution and Health Effects (B20009)。
文摘Graphene oxide(GO),a new and promising material,has been widely used as a co-catalyst in photocatalytic reactions;however,its capacity as a sole photocatalyst has rarely been investigated.In this study,ultraviolet(UV) light irradiation was used as a modification method to obtain reduced GO(rGO) samples.The samples were used as photocatalysts to examine their visible light photocatalytic activity toward hexavalent chromium(Cr(Ⅵ)) removal.Atomic force microscopy(AFM),X-ray diffraction(XRD),UV-vis spectrophotometry,Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),and electron spin resonance(ESR) spectroscopy were applied to interpret the surface and structure changes with UV irradiation.The oxygen-containing functional groups(OFGs) on the GO surface were reduced to defective carbons andπ-conjugated C=C(sp^(2) domains) under UV light;this led to a decrease in the interlayer distance between GO sheets,GO fragmentation,and increased disorder on the GO surface.The restoration of sp^(2) domains led to a narrower band gap of GO,which favored the rGO excitation by visible light to generate electron-hole pairs.The rGO pre-irradiated with UV for 1 h(rGO-1),possessing the highest defect density and electron generation efficiency,exhibited the best Cr(Ⅵ) reduction efficiency,which was about three times that of the GO sample;moreover,it outperformed most of the reported GO-based nanomaterials.In addition,low pH and the addition of citric acid as a hole scavenger could further improve the photocatalytic activity.This study proves that GO or rGO can be used as a sole photocatalyst under visible light to remove environmental pollutants such as heavy-metal ions,and it paves the way for the development of this kind of material and its UV-irradiation modification for further applications.
基金Project supported by the National Natural Science Foundation of China(No.11372261)the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province(No.2013JQ0030)+3 种基金the Supporting Project of Department of Education of Sichuan Province(No.2014zd3132)the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process,Southwest University of Science and Technology-Ministry of Education(No.12zxzk02)the Fund of Doctoral Research of Southwest University of Science and Technology(No.12zx7106)the Postgraduate Innovation Fund Project of Southwest University of Science and Technology(No.14ycxjj0121)
文摘Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most de- fects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed.