A density functional theory(DFT)study was employed to investigate the mechanical property,thermal conductivity,Debye temperature,electronic structure and defect chemistry of(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7).All the(Gd_(...A density functional theory(DFT)study was employed to investigate the mechanical property,thermal conductivity,Debye temperature,electronic structure and defect chemistry of(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7).All the(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7) compounds exhibit an excellent structural and mechanical stability(Gd_(0.25)Sm_(0.75))_(2)Zr_(2)O_(7) has the lowest Young’s modulus of 213.7 GPa,the largest Possion’s ratio of 0.292,the lowest Debye temperature of 491.8 K and the lowest thermal conductivity.The calculated thermal conductivities of(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7) are 1.17-1.21 W/(m·K)by the Clark’s model and 1.32-1.36 W/(m·K)by the Cahall’s model,respectively.The formation energies of O vacancies at 48f site are negative,which increase with the Sm content,however,the formation energies of O vacancies at 8b site are almost invariable.In addition,Sm partly occupying the Gd-site reduces distinctly the formation energies of defects such as A-site vacancies,cation antisite defects,anion Frenkel pairs of oxygen at 8b site and cation interstitials,which suggests that Sm-doped Gd_(2)Zr_(2)O_(7),especially equimolar GdSmZr_(2)O_(7),has a better irradiation tolerance.After the 16 MeVTa-ion irradiation at a fluence of 1×10^(14) or 2×10^(14) ions/cm^(2),the crystal structure of GdSmZr_(2)O_(7) transforms from pyrochlore to a defect fluorite without obvious amorphous phase.展开更多
Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanis...Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanism of high-temperature stability of pyrochlore zirconates.Results showed that with the rise of the atom mass of A,the defect formation energies decreased that meant the crystal structure tended to become more disordered.Noticeably,the first nearest cation antisite dominated the pyrochlore disorder transformation process.In addition,it was found that the diffusion of oxygen atoms was far higher than that of cations,and was increased with the temperature,thus also promoting the pyrochlore-fluorite transformation process.展开更多
Defect curvature was developed based on our previously proposed direction curvature theory. Defect curvature, as a universal criterion, was used to identify vacancy formation energies E_f of mono-vacancies to octa-vac...Defect curvature was developed based on our previously proposed direction curvature theory. Defect curvature, as a universal criterion, was used to identify vacancy formation energies E_f of mono-vacancies to octa-vacancies in a(5,5) tube. An ab initio calculation results showed that E_f decreased with increasing the defect curvature K_(V_s)(s = 1~8). The structures with removed carbon atoms along zigzag chain or the tubular axis were the most stable in each kind of Vs, because their corresponding K_(V_s) was the largest. In addition, local product structures disturbed the variation rule of E_f as K_(V_s). There was an odd-even oscillation rule in the smallest E_f among each kind of Vs as the s value and vacancies V2, V4 and V6 were more stable. The stabilities of the related vacancy structures were confirmed by two dissociation processes.展开更多
By using the first-principles calculation, we studied the mechanisms of point defects in Y4AI209 (YAM), a promising ternary oxide with excellent optical and thermal properties. It is found that the predominant nativ...By using the first-principles calculation, we studied the mechanisms of point defects in Y4AI209 (YAM), a promising ternary oxide with excellent optical and thermal properties. It is found that the predominant native defect species is closely dependent on the chemical potentials of each constituent. In the case of O-rich condition, the oxygen interstitial has the very low defect formation energy, followed by the anti-site defects and AI vacancy; in the case of AI-rich condition, the oxygen vacancy yields the lowest defect formation energy, followed by the anti-site defects and AI interstitial. The present result shows that in all the possible chemical potential ranges, anti-site defects have relatively low defect formation energy and might exist in high concentration in YAM. Furthermore, AIy anti-site has relatively lower defect formation energy than the YAt anti- site throughout. The behaviors of defect complexes under non-stoichiometric condition, such as the AI203 or Y203 excess, are also investigated. The results provide helpful guide to optimize the experimental synthesizing of YAM.展开更多
The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have stu...The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3d transition-metal(TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect(QAHE) in SnTe.展开更多
基金Project supported by the National Natural Science Foundation of China(51621091,51321061,51021002)the National Science and Technology Major Project(2017-Ⅵ-0020-0093)。
文摘A density functional theory(DFT)study was employed to investigate the mechanical property,thermal conductivity,Debye temperature,electronic structure and defect chemistry of(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7).All the(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7) compounds exhibit an excellent structural and mechanical stability(Gd_(0.25)Sm_(0.75))_(2)Zr_(2)O_(7) has the lowest Young’s modulus of 213.7 GPa,the largest Possion’s ratio of 0.292,the lowest Debye temperature of 491.8 K and the lowest thermal conductivity.The calculated thermal conductivities of(Gd_(1-x)Sm_(x))_(2)Zr_(2)O_(7) are 1.17-1.21 W/(m·K)by the Clark’s model and 1.32-1.36 W/(m·K)by the Cahall’s model,respectively.The formation energies of O vacancies at 48f site are negative,which increase with the Sm content,however,the formation energies of O vacancies at 8b site are almost invariable.In addition,Sm partly occupying the Gd-site reduces distinctly the formation energies of defects such as A-site vacancies,cation antisite defects,anion Frenkel pairs of oxygen at 8b site and cation interstitials,which suggests that Sm-doped Gd_(2)Zr_(2)O_(7),especially equimolar GdSmZr_(2)O_(7),has a better irradiation tolerance.After the 16 MeVTa-ion irradiation at a fluence of 1×10^(14) or 2×10^(14) ions/cm^(2),the crystal structure of GdSmZr_(2)O_(7) transforms from pyrochlore to a defect fluorite without obvious amorphous phase.
基金Sponsored by the National Natural Science Foundation of China (50801005)
文摘Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanism of high-temperature stability of pyrochlore zirconates.Results showed that with the rise of the atom mass of A,the defect formation energies decreased that meant the crystal structure tended to become more disordered.Noticeably,the first nearest cation antisite dominated the pyrochlore disorder transformation process.In addition,it was found that the diffusion of oxygen atoms was far higher than that of cations,and was increased with the temperature,thus also promoting the pyrochlore-fluorite transformation process.
基金Supported by Talent Incubation Funding of School of Materials and Metallurgy(2014CY012)Produce-Learn-Research project of Inner Mongolia University of Science&Technology(PY-201502)
文摘Defect curvature was developed based on our previously proposed direction curvature theory. Defect curvature, as a universal criterion, was used to identify vacancy formation energies E_f of mono-vacancies to octa-vacancies in a(5,5) tube. An ab initio calculation results showed that E_f decreased with increasing the defect curvature K_(V_s)(s = 1~8). The structures with removed carbon atoms along zigzag chain or the tubular axis were the most stable in each kind of Vs, because their corresponding K_(V_s) was the largest. In addition, local product structures disturbed the variation rule of E_f as K_(V_s). There was an odd-even oscillation rule in the smallest E_f among each kind of Vs as the s value and vacancies V2, V4 and V6 were more stable. The stabilities of the related vacancy structures were confirmed by two dissociation processes.
基金supported by the National Natural Science Foundation of China under Grant Nos.50672102,50832008 and 51032006
文摘By using the first-principles calculation, we studied the mechanisms of point defects in Y4AI209 (YAM), a promising ternary oxide with excellent optical and thermal properties. It is found that the predominant native defect species is closely dependent on the chemical potentials of each constituent. In the case of O-rich condition, the oxygen interstitial has the very low defect formation energy, followed by the anti-site defects and AI vacancy; in the case of AI-rich condition, the oxygen vacancy yields the lowest defect formation energy, followed by the anti-site defects and AI interstitial. The present result shows that in all the possible chemical potential ranges, anti-site defects have relatively low defect formation energy and might exist in high concentration in YAM. Furthermore, AIy anti-site has relatively lower defect formation energy than the YAt anti- site throughout. The behaviors of defect complexes under non-stoichiometric condition, such as the AI203 or Y203 excess, are also investigated. The results provide helpful guide to optimize the experimental synthesizing of YAM.
基金supported by the National Key Research and Development Program,the National Natural Science Foundation of China(Grant Nos.11334006 and 11504015)the Open Research Fund Program of the State Key Laboratory of Low-dimensional Quantum Physics(Grant No.KF201508)
文摘The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3d transition-metal(TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect(QAHE) in SnTe.