In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial...In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial space are used as the shape function space and the test function space, respectively. We prove that the approximation order of the standard quadratic finite element can be attained in this Petrov-Galerkin model. Based on the so-called 'contractivity' of the interpolation operator, we further prove that the defect iterative sequence of the linear finite element solution converge to the proposed Petrov-Galerkin approximate solution.展开更多
This paper develops a new method to analyze convergence of the iterated defect correction scheme of finite element methods on rectangular grids in both two and three dimensions. The main idea is to formulate energy in...This paper develops a new method to analyze convergence of the iterated defect correction scheme of finite element methods on rectangular grids in both two and three dimensions. The main idea is to formulate energy inner products and energy (semi)norms into matrix forms. Then, two constants of two key inequalities involved are min and max eigenvalues of two associated generalized eigenvalue problems, respectively. Local versions on the element level of these two generalized eigenvalue problems are exactly solved to obtain sharp (lower) upper bounds of these two constants. This and some essential observations for iterated solutions establish convergence in 2D and the monotone decreasing property in 3D. For two dimensions the results herein improve those in literature; for three dimensions the results herein are new. Numerical results are presented to examine theoretical results.展开更多
文摘In this paper we introduce a Petrov-Galerkin approximation model to the solution of linear and semi-linear elliptic boundary value problems in which piecewise quadratic polynomial space and piecewise linear polynomial space are used as the shape function space and the test function space, respectively. We prove that the approximation order of the standard quadratic finite element can be attained in this Petrov-Galerkin model. Based on the so-called 'contractivity' of the interpolation operator, we further prove that the defect iterative sequence of the linear finite element solution converge to the proposed Petrov-Galerkin approximate solution.
基金Acknowledgments. The author was supported by the National Natural Science Foundation of China (11101013, 11401015) and the PHR (IHLB) under Grant PHR201108074.
文摘This paper develops a new method to analyze convergence of the iterated defect correction scheme of finite element methods on rectangular grids in both two and three dimensions. The main idea is to formulate energy inner products and energy (semi)norms into matrix forms. Then, two constants of two key inequalities involved are min and max eigenvalues of two associated generalized eigenvalue problems, respectively. Local versions on the element level of these two generalized eigenvalue problems are exactly solved to obtain sharp (lower) upper bounds of these two constants. This and some essential observations for iterated solutions establish convergence in 2D and the monotone decreasing property in 3D. For two dimensions the results herein improve those in literature; for three dimensions the results herein are new. Numerical results are presented to examine theoretical results.