There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods...There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.展开更多
Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line d...Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.展开更多
An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This ...An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types.In the proposed algorithmic scheme,fuzzy cmeans clustering is used for image segmentation via image subtraction prior to defect detection.Arithmetic and logic operations,the circle hough transform(CHT),morphological reconstruction(MR),and connected component labeling(CCL)are used in defect classification.The algorithmic scheme achieves 100%defect detection and 99.05%defect classification accuracies.The novelty of this research lies in the concurrent use of CHT,MR,and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location,area,and nature of defects.This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process.Moreover,the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process,improve the PCB quality,and lower the production cost.展开更多
An experimental platform with bracket structures,cables,parallel computer and imaging system is designed for defects detecting on steel rails. Meanwhile,an improved gradient descent algorithm based on a self-adaptive ...An experimental platform with bracket structures,cables,parallel computer and imaging system is designed for defects detecting on steel rails. Meanwhile,an improved gradient descent algorithm based on a self-adaptive learning rate and a fixed momentum factor is developed to train back-propagation neural network for accurate and efficient defects classifications. Detection results of rolling scar defects show that such detection system can achieve accurate positioning to defects edges for its improved noise suppression. More precise characteristic parameters of defects can also be extracted.Furthermore,defects classification is adopted to remedy the limitations of low convergence rate and local minimum. It can also attain the optimal training precision of 0. 00926 with the least 96 iterations. Finally,an enhanced identification rate of 95% has been confirmed for defects by using the detection system. It will also be positive in producing high-quality steel rails and guaranteeing the national transport safety.展开更多
The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to ac...The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity.展开更多
The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a ...The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a hierarchical classification for defects is proposed.Firstly,samples are collected according to the method of minimum rectangle,and defects are extracted by image processing method.According to the geometric features of representation, they are divided into dot,line and surface for rough classification. From analysing the data which extracting the defects of geometry,gray and texture,the dominating characteristics can be acquired. Each type of defect by choosing different and representative characteristics,reducing the dimension of the data,and through these characteristics of clustering to achieve convergence effectively,realize extracted accurately,and digitized the defect characteristics,eventually establish the database. The results showthat this method can achieve more than 90% accuracy and greatly improve the accuracy of classification.展开更多
This research investigates deep learning-based approach for defect detection in the steel production using Severstal steel dataset. The developed system integrates DenseNet121 for classification and DeepLabV3 for segm...This research investigates deep learning-based approach for defect detection in the steel production using Severstal steel dataset. The developed system integrates DenseNet121 for classification and DeepLabV3 for segmentation. DenseNet121 achieved high accuracy with defect classification as it achieved 92.34% accuracy during testing. This model significantly outperformed benchmark models like VGG16 and ResNet50, which achieved 72.59% and 92.01% accuracy, respectively. Similarly, for segmentation, DeepLabV3 showed high performance in localizing and categorizing defects, achieving a Dice coefficient of 84.21% during training and 69.77% during validation. The dataset includes steels which have four different types of defects and the DeepLab model was particularly effective with detection of Defect 4, with a Dice coefficient of 87.69% in testing. The model performs suboptimally in segmentation of Defect 1, achieving an accuracy of 64.81%. The overall system’s integration of classification and segmentation, alongside thresholding techniques, resulted in improved precision (92.31%) and reduced false positives. Overall, the proposed deep learning system achieved superior defect detection accuracy and reliability compared to existing models in the literature.展开更多
We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as ...We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %.展开更多
We proposed a detection method for wood defects based on linear discriminant analysis (LDA) and the use of compressed sensor images. Wood surface images were captured, using a camera Oscar F810C IRF camera, and then t...We proposed a detection method for wood defects based on linear discriminant analysis (LDA) and the use of compressed sensor images. Wood surface images were captured, using a camera Oscar F810C IRF camera, and then the image segmentation was performed, and the defect features were extracted from wood board images. To reduce the processing time, LDA algorithm was used to integrate these features and reduce their dimensions. Features after fusion were used to construct a data dictionary and a compressed sensor was designed to recognize the wood defects types. Of the three major defect types, 50 images live knots, dead knots, and cracks were used to test the effects of this method. The average time for feature fusion and classification was 0.446 ms with the classification accuracy of 94%.展开更多
Recently,the demand for renewable energy has increased due to its environmental and economic needs.Solar panels are the mainstay for dealing with solar energy and converting it into another form of usable energy.Solar...Recently,the demand for renewable energy has increased due to its environmental and economic needs.Solar panels are the mainstay for dealing with solar energy and converting it into another form of usable energy.Solar panels work under suitable climatic conditions that allow the light photons to access the solar cells,as any blocking of sunlight on these cells causes a halt in the panels work and restricts the carry of these photons.Thus,the panels are unable to work under these conditions.A layer of snow forms on the solar panels due to snowfall in areas with low temperatures.Therefore,it causes an insulating layer on solar panels and the inability to produce electrical energy.The detection of snow-covered solar panels is crucial,as it allows us the opportunity to remove snow using some heating techniques more efficiently and restore the photovoltaics system to proper operation.This paper presents five deep learning models,■-16,■-19,ESNET-18,ESNET-50,and ESNET-101,which are used for the recognition and classification of solar panel images.In this paper,two different cases were applied;the first case is performed on the original dataset without trying any kind of preprocessing,and the second case is extreme climate conditions and simulated by generating motion noise.Furthermore,the dataset was replicated using the upsampling technique in order to handle the unbalancing issue.The conducted dataset is divided into three different categories,namely;all_snow,no_snow,and partial snow.The fivemodels are trained,validated,and tested on this dataset under the same conditions 60%training,20%validation,and testing 20%for both cases.The accuracy of the models has been compared and verified to distinguish and classify the processed dataset.The accuracy results in the first case showthat the comparedmodels■-16,■-19,ESNET-18,and ESNET-50 give 0.9592,while ESNET-101 gives 0.9694.In the second case,the models outperformed their counterparts in the first case by evaluating performance,where the accuracy results reached 1.00,0.9545,0.9888,1.00.and 1.00 for■-16,■-19,ESNET-18 and ESNET-50,respectively.Consequently,we conclude that the second case models outperformed their peers.展开更多
基金National Natural Science Foundation of China(Grant No.61573233)Guangdong Provincial Natural Science Foundation of China(Grant No.2018A0303130188)+1 种基金Guangdong Provincial Science and Technology Special Funds Project of China(Grant No.190805145540361)Special Projects in Key Fields of Colleges and Universities in Guangdong Province of China(Grant No.2020ZDZX2005).
文摘There may be several internal defects in railway track work that have different shapes and distribution rules,and these defects affect the safety of high-speed trains.Establishing reliable detection models and methods for these internal defects remains a challenging task.To address this challenge,in this study,an intelligent detection method based on a generalization feature cluster is proposed for internal defects of railway tracks.First,the defects are classified and counted according to their shape and location features.Then,generalized features of the internal defects are extracted and formulated based on the maximum difference between different types of defects and the maximum tolerance among same defects’types.Finally,the extracted generalized features are expressed by function constraints,and formulated as generalization feature clusters to classify and identify internal defects in the railway track.Furthermore,to improve the detection reliability and speed,a reduced-dimension method of the generalization feature clusters is presented in this paper.Based on this reduced-dimension feature and strongly constrained generalized features,the K-means clustering algorithm is developed for defect clustering,and good clustering results are achieved.Regarding the defects in the rail head region,the clustering accuracy is over 95%,and the Davies-Bouldin index(DBI)index is negligible,which indicates the validation of the proposed generalization features with strong constraints.Experimental results prove that the accuracy of the proposed method based on generalization feature clusters is up to 97.55%,and the average detection time is 0.12 s/frame,which indicates that it performs well in adaptability,high accuracy,and detection speed under complex working environments.The proposed algorithm can effectively detect internal defects in railway tracks using an established generalization feature cluster model.
文摘Ensuring high product quality is of paramount importance in pharmaceutical drug manufacturing,as it is subject to rigorous regulatory practices.This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters.Firstly,the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction.To address this,the deep semantic network with boundary refinement(DSN-BR)model is proposed,which leverages semantic segmentation domain knowledge,to accurately segment the defects in pixel level.Additionally,a specialized image acquisition module that minimizes the impact of ambient light is established,ensuring high-quality image capture.Finally,the image acquisition module,image detection module,and data management module are designed to construct a comprehensive online surface defect detection system.To validate the effectiveness of our approach,we employ a real dataset for instance verification on the implemented system.The experimental results substantiate the outstanding performance of the DSN-BR,achieving the mean intersection over union(MIoU)of 90.5%.Furthermore,the proposed system achieves an inference speed of up to 14.12 f/s,while attaining an F1-Score of 98.25%.These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality.By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process,our approach holds significant market application prospects.
基金This research is supported by the National Research Council of Thailand(NRCT).Project ID:618211.
文摘An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types.In the proposed algorithmic scheme,fuzzy cmeans clustering is used for image segmentation via image subtraction prior to defect detection.Arithmetic and logic operations,the circle hough transform(CHT),morphological reconstruction(MR),and connected component labeling(CCL)are used in defect classification.The algorithmic scheme achieves 100%defect detection and 99.05%defect classification accuracies.The novelty of this research lies in the concurrent use of CHT,MR,and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location,area,and nature of defects.This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process.Moreover,the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process,improve the PCB quality,and lower the production cost.
基金Supported by the National Natural Science Foundation of China(No.51174151)the Key Scientific Research Project of Education Department of Hubei Province(No.D20151102)the Key Scientific and Technological Project of Wuhan Technology Bureau(No.2014010202010088)
文摘An experimental platform with bracket structures,cables,parallel computer and imaging system is designed for defects detecting on steel rails. Meanwhile,an improved gradient descent algorithm based on a self-adaptive learning rate and a fixed momentum factor is developed to train back-propagation neural network for accurate and efficient defects classifications. Detection results of rolling scar defects show that such detection system can achieve accurate positioning to defects edges for its improved noise suppression. More precise characteristic parameters of defects can also be extracted.Furthermore,defects classification is adopted to remedy the limitations of low convergence rate and local minimum. It can also attain the optimal training precision of 0. 00926 with the least 96 iterations. Finally,an enhanced identification rate of 95% has been confirmed for defects by using the detection system. It will also be positive in producing high-quality steel rails and guaranteeing the national transport safety.
文摘The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity.
文摘The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a hierarchical classification for defects is proposed.Firstly,samples are collected according to the method of minimum rectangle,and defects are extracted by image processing method.According to the geometric features of representation, they are divided into dot,line and surface for rough classification. From analysing the data which extracting the defects of geometry,gray and texture,the dominating characteristics can be acquired. Each type of defect by choosing different and representative characteristics,reducing the dimension of the data,and through these characteristics of clustering to achieve convergence effectively,realize extracted accurately,and digitized the defect characteristics,eventually establish the database. The results showthat this method can achieve more than 90% accuracy and greatly improve the accuracy of classification.
文摘This research investigates deep learning-based approach for defect detection in the steel production using Severstal steel dataset. The developed system integrates DenseNet121 for classification and DeepLabV3 for segmentation. DenseNet121 achieved high accuracy with defect classification as it achieved 92.34% accuracy during testing. This model significantly outperformed benchmark models like VGG16 and ResNet50, which achieved 72.59% and 92.01% accuracy, respectively. Similarly, for segmentation, DeepLabV3 showed high performance in localizing and categorizing defects, achieving a Dice coefficient of 84.21% during training and 69.77% during validation. The dataset includes steels which have four different types of defects and the DeepLab model was particularly effective with detection of Defect 4, with a Dice coefficient of 87.69% in testing. The model performs suboptimally in segmentation of Defect 1, achieving an accuracy of 64.81%. The overall system’s integration of classification and segmentation, alongside thresholding techniques, resulted in improved precision (92.31%) and reduced false positives. Overall, the proposed deep learning system achieved superior defect detection accuracy and reliability compared to existing models in the literature.
基金financially supported by the Fund of Forestry 948 Project(2011-4-04)the Fundamental Research Funds for the Central Universities(DL13CB02,DL13BB21)the Natural Science Foundation of Heilongjiang Province(C201415)
文摘We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %.
基金supported by the State Forestry Administration‘‘948’’projects(2015-4-52)Fundamental Research Funds for the Central Universities(2572016BB05)+1 种基金Natural Science Foundation of Heilongjiang Province(C2015054)Heilongjiang Postdoctoral Research Fund(LBH-Q14014)
文摘We proposed a detection method for wood defects based on linear discriminant analysis (LDA) and the use of compressed sensor images. Wood surface images were captured, using a camera Oscar F810C IRF camera, and then the image segmentation was performed, and the defect features were extracted from wood board images. To reduce the processing time, LDA algorithm was used to integrate these features and reduce their dimensions. Features after fusion were used to construct a data dictionary and a compressed sensor was designed to recognize the wood defects types. Of the three major defect types, 50 images live knots, dead knots, and cracks were used to test the effects of this method. The average time for feature fusion and classification was 0.446 ms with the classification accuracy of 94%.
文摘Recently,the demand for renewable energy has increased due to its environmental and economic needs.Solar panels are the mainstay for dealing with solar energy and converting it into another form of usable energy.Solar panels work under suitable climatic conditions that allow the light photons to access the solar cells,as any blocking of sunlight on these cells causes a halt in the panels work and restricts the carry of these photons.Thus,the panels are unable to work under these conditions.A layer of snow forms on the solar panels due to snowfall in areas with low temperatures.Therefore,it causes an insulating layer on solar panels and the inability to produce electrical energy.The detection of snow-covered solar panels is crucial,as it allows us the opportunity to remove snow using some heating techniques more efficiently and restore the photovoltaics system to proper operation.This paper presents five deep learning models,■-16,■-19,ESNET-18,ESNET-50,and ESNET-101,which are used for the recognition and classification of solar panel images.In this paper,two different cases were applied;the first case is performed on the original dataset without trying any kind of preprocessing,and the second case is extreme climate conditions and simulated by generating motion noise.Furthermore,the dataset was replicated using the upsampling technique in order to handle the unbalancing issue.The conducted dataset is divided into three different categories,namely;all_snow,no_snow,and partial snow.The fivemodels are trained,validated,and tested on this dataset under the same conditions 60%training,20%validation,and testing 20%for both cases.The accuracy of the models has been compared and verified to distinguish and classify the processed dataset.The accuracy results in the first case showthat the comparedmodels■-16,■-19,ESNET-18,and ESNET-50 give 0.9592,while ESNET-101 gives 0.9694.In the second case,the models outperformed their counterparts in the first case by evaluating performance,where the accuracy results reached 1.00,0.9545,0.9888,1.00.and 1.00 for■-16,■-19,ESNET-18 and ESNET-50,respectively.Consequently,we conclude that the second case models outperformed their peers.